106 research outputs found

    Implementation of an innovative teaching project in a Chemical Process Design course at the University of Cantabria, Spain

    Get PDF
    This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.This work was partially supported with the financial help of the University of Cantabria, 1st and 2nd Teaching Innovation Programs 2011-2012, 2013-2014, Projects Innodesign 1 and 2

    The Prometheus Taxonomic Model: a practical approach to representing multiple classification.

    Get PDF
    A model for representing taxonomic data in a flexible and dynamic system capable of handling and comparing multiple simultaneous classifications is presented. The Prometheus Taxonomic Model takes as its basis the idea that a taxon can be circumscribed by the specimens or taxa of a lower rank which are said to belong to it. In this model alternative taxon concepts are therefore represented in terms of differing circumscriptions. This provides a more objective way of expressing taxonomic concepts than purely descriptive circumscriptions have been published. Using specimens as the fundamental elements of taxon circumscription also allows for the automatic naming of taxa based upon the distribution and priority of types within each circumscription, and by application of the International Code of Botanical Nomenclature. This approach effectively separates the process of naming taxa (nomenclature) from that of classification, and therefore enables the system to store multiple classifications. The derivation of the model, how it compares with other models, and the implications for the construction of global data sets and taxonomic working practice are discussed

    Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

    Get PDF
    [EN] Background: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. Results: Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. Conclusions: This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.We are grateful to the gene banks for their collections that made this study possible. We thank Syngenta Seeds for providing genotyping data for 42 accessions. We would like to thank the Supercomputing and Bioinnovation Center (Universidad de Malaga, Spain) for providing computational resources to process the SNAPP phylogenetic tree. This research was supported in part by the USDA/NIFA funded SolCAP project under contract number to DF and USDA AFRI 2013-67013-21229 to EvdK and DF.Blanca Postigo, JM.; Montero Pau, J.; Sauvage, C.; Bauchet, G.; Illa, E.; DĂ­ez NiclĂłs, MJTDJ.; Francis, D.... (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 16(257):1-19. https://doi.org/10.1186/s12864-015-1444-1S11916257Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science (80-). 1997;277:1063–6.Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 2002;42:1780.Weigel D, Nordborg M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol. 2005;138:567–8.Peralta IE, Spooner DM, Knapp S, Anderson C. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr. 2008;84:1–186.Rick CM, Fobes JF. Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club. 1975;102:376–84.Zuriaga E, Blanca J, Nuez F. Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol. 2008;56:663–78.Zuriaga E, Blanca J, Cordero L, Sifres A, Blas-CerdĂĄn WG, Morales R, et al. Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol. 2008;56:39–51.Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One. 2012;7:e48198.Rick CM. Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agrar. 1976;30:249–59.Rick CM, Holle M. Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot. 1990;44:69–78.Nakazato T, Franklin RA, Kirk BC, Housworth EA. Population structure, demographic history, and evolutionary patterns of a green-fruited tomato, Solanum peruvianum (Solanaceae), revealed by spatial genetics analyses. Am J Bot. 2012;99:1207–16.Rick CM, Butler L. Cytogenetics of the Tomato. Adv Genet. 1956;8:267–382. Advances in Genetics.Jenkins JA. The origin of the cultivated tomato. Econ Bot. 1948;2:379–92.Nesbitt TC, Tanksley SD. Comparative sequencing in the genus lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics. 2002;162:365–79.Ranc N, Muños S, Santoni S, Causse M. A clarified position for Solanum lycopersicum var cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 2008;8:130.De Candolle A. Origin of cultivated plants. 2nd ed. London: Trench, Paul; 1886.Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet. 1990;80:437–48.Williams CE, Clair DAS. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome. 1993;36:619–30.Park YH, West MAL, St Clair DA. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L). Genome. 2004;47:510–8.Sim S-C, Robbins MD, Van Deynze A, Michel AP, Francis DM. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity (Edinb). 2011;106:927–35.Sim S-C, Robbins MD, Chilcott C, Zhu T, Francis DM. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L) reveals patterns of SNP variation associated with breeding. BMC Genomics. 2009;10:466.Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, et al. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One. 2012;7:e40563.Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289:85–8.Liu J, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A. 2002;99:13302–6.Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008;319:1527–30.Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet. 2008;40:800–4.Muños S, Ranc N, Botton E, BĂ©rard A, Rolland S, DuffĂ© P, et al. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 2011;156:2244–54.Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A. 2013;110:17125–30.RodrĂ­guez GR, Muños S, Anderson C, Sim S-C, Michel A, Causse M, et al. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 2011;156:275–85.Sim S-C, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, et al. High-density SNP genotyping of tomato (Solanum lycopersicum L) reveals patterns of genetic variation due to breeding. PLoS One. 2012;7:e45520.Sauvage C, Segura V, Bauchet G, Stevens R, Thi Do P, Nikoloski Z, et al. Genome Wide Association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014;165:1120–32.Hamilton JP, Sim S-C, Stoffel K, Van Deynze A, Buell CR, Francis DM. Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome J. 2012;5:17.Patterson NJ, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.Kosman E, Leonard KJ. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol. 2005;14:415–24.Adler D. vioplot: Violin plot. 2005.Jost L. Gst and its relatives do not measure differentiation. Mol Ecol. 2008;17:4015–26.Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Ecol Evol. 2006;23:254–67.Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, et al. PyCogent: a toolkit for making sense from sequence. Genome Biol. 2007;8:R171.Szpiech ZA, Jakobsson M, Rosenberg NA. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics. 2008;24:2498–504.Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829.R Core Team. R: A Language and Environment for Statistical Computing. 2013.Sinnot RS. Virtues of the haversine. Sky Telesc. 1984;68:159.Hijmans RJ, Etten JV. raster: Geographic data analysis and Modeling. 2013.Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol. 2012;29:1917–32.Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.Rambaut A. Tracer v.1.5. 2009.Huang Z, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet. 2011;123:465–74.Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, et al. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 2010;22:1057–73.Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989.Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. Genomic analyses provide insights into the history of tomato breeding. Nat Genet. 2014;46:1220–6.Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 2010;6:e1000843.Pressoir G, Berthaud J. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity (Edinb). 2004;92:88–94.Koenig D, JimĂ©nez-GĂłmez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:e2655–62.Nakazato T, Housworth EA. Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. Am J Bot. 2011;98:88–98.United States. Office of Experimental Stations. Experimental Station Recod, Volumen 39. Volume 39. Washington, DC, USA: United States. Office of Experimental Stations; 1918.Merk HL, Yames SC, Van Deynze A, Tong N, Menda N, Mueller LA, et al. Trait diversity and potential for selection indeces based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci. 2012;137:427–37

    The geomorphology of Ireland's Coastline : patterns, processes and future prospects

    No full text
    Glacial history and sea-level have together helped shape the coastline of Ireland. Ireland's coastline suffers erosional problems at many points at present. More information is needed on the causes and type of erosion in progress. It is necessary that management plans be set in place in order to maintain coastal environments in the future.GĂ©omorphologie des cĂŽtes irlandaises : modelĂ©s, processus et perspectives d'Ă©volution Il n'existe pas, jusqu'ici, d'Ă©tude intĂ©grĂ©e ni d'analyse systĂ©mique du littoral irlandais. L'Ă©volution des diffĂ©rents secteurs cĂŽtiers dĂ©pend Ă  la fois de la lithologie et de l'Ă©nergie des vagues. Celle-ci est beaucoup plus faible sur les cĂŽtes de la mer d'Irlande que le long de l'Atlantique oĂč des vagues peuvent atteindre 20 m de hauteur (fig. 1 et photo 1).Sinnot A.M., Devoy R. J. N. The geomorphology of Ireland's Coastline : patterns, processes and future prospects. In: Hommes et Terres du Nord, 1992/3. Les littoraux. pp. 145-153

    Progress in DEM modelling of comminution related processes: Screens, crushers and mills

    No full text
    Particle scale simulation of key comminution processes using DEM (Discrete Element Method) offers the opportunity for better understanding the flow dynamics leading to improvements in equipment design and operation that can potentially lead to large increases in efficiency, throughput or product quality. In this paper examples of the most up to date DEM models of screens, crushers and SAG mills are presented

    Laparoscopic appendectomy in modern gynecology

    No full text
    Gynecologists frequently manage women with acute or chronic pain in the right iliac fossa. Appendicitis is one of the common conditions encountered in this setting. From the gynecologic perspective, issues regarding the role of laparoscopic appendectomy include radioimaging and laparoscopic diagnosis, operative technique, advantages and disadvantages, and laparoscopic appendectomy in pregnancy and in complicated appendicitis. Most studies are in favor of the procedure, and it seems reasonable to include it in training programs in gynecology

    The formation of the cell plate during cytokinesis in Allium cepa L.

    No full text

    Drosophila Importin α1 Performs Paralog-Specific Functions Essential For Gametogenesis

    No full text
    Importin α's mediate nuclear transport by linking nuclear localization signal (NLS)-containing proteins to importin ÎČ1. Animal genomes encode three conserved groups of importin α's, α1's, α2's, and α3's, each of which are competent to bind classical NLS sequences. Using Drosophila melanogaster we describe the isolation and phenotypic characterization of the first animal importin α1 mutant. Animal α1's are more similar to ancestral plant and fungal α1-like genes than to animal α2 and α3 genes. Male and female importin α1 (Dα1) null flies developed normally to adulthood (with a minor wing defect) but were sterile with defects in gametogenesis. The Dα1 mutant phenotypes were rescued by Dα1 transgenes, but not by Dα2 or Dα3 transgenes. Genetic interactions between the ectopic expression of Dα1 and the karyopherins CAS and importin ÎČ1 suggest that high nuclear levels of Dα1 are deleterious. We conclude that Dα1 performs paralog-specific activities that are essential for gametogenesis and that regulation of subcellular Dα1 localization may affect cell fate decisions. The initial expansion and specialization of the animal importin α-gene family may have been driven by the specialized needs of gametogenesis. These results provide a framework for studies of the more complex mammalian importin α-gene family
    • 

    corecore