78 research outputs found

    Steady states in a structured epidemic model with Wentzell boundary condition

    Get PDF
    We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the positive steady state

    Invertebrate Post-Segregation Distorters: A New Embryo-Killing Gene

    Get PDF
    Cytoplasmic incompatibility induced by inherited intracellular bacteria of arthropods, and Medea elements found in flour beetles, are both forms of postsegregation distortion involving the killing of embryos in order to increase the ratio of progeny that inherit them. The recently described peel-zeel element of Caenorhabditis elegans also uses this mechanism; like Medea the genes responsible are in the nuclear genome but it shares a paternal mode of action with the bacteria. The peel-1 gene has now been shown to encode a potent toxin that is delivered by sperm, and rescued by zygotic transcription of the linked zeel-1. The predominance of self-fertilization in C. elegans has produced an unusual distribution pattern for a selfish genetic element; further population and functional studies will shed light on its evolution. The element might also have potential for use in disease control

    The Serine 814 of TRPC6 Is Phosphorylated under Unstimulated Conditions

    Get PDF
    TRPC are nonselective cation channels involved in calcium entry. Their regulation by phosphorylation has been shown to modulate their routing and activity. TRPC6 activity increases following phosphorylation by Fyn, and is inhibited by protein kinase G and protein kinase C. A previous study by our group showed that TRPC6 is phosphorylated under unstimulated conditions in a human embryonic kidney cells line (HEK293). To investigate the mechanism responsible for this phosphorylation, we used a MS/MS approach combined with metabolic labeling and showed that the serine at position 814 is phosphorylated in unstimulated cells. The mutation of Ser814 into Ala decreased basal phosphorylation but did not modify TRPC6 activity. Even though Ser814 is within a consensus site for casein kinase II (CK2), we showed that CK2 is not involved in the phosphorylation of TRPC6 and does not modify its activity. In summary, we identified a new basal phosphorylation site (Ser814) on TRPC6 and showed that CK2 is not responsible for the phosphorylation of this site

    Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males.</p> <p>Methods</p> <p>A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of <it>Anopheles gambiae</it>. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1) proportion of ovipositing females, (2) proportion of ovipositing females that produced larvae, (3) proportion of females that produced larvae, (4) number of eggs laid per female, (5) number of larvae per ovipositing female and (6) number of larvae per female.</p> <p>Results</p> <p>The proportion of ovipositing females (trait 1) and the proportion of ovipositing females that produced larvae (trait 2) differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners.</p> <p>Conclusion</p> <p>The first study to quantify genetic variation for male reproductive success in <it>A. gambiae </it>found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae) had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female) did not.</p

    Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue viruses (DENV) are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The <it>trans</it>-splicing variant of the <it>Tetrahymena thermophila </it>group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors.</p> <p>Results</p> <p>Several anti-DENV Group I <it>trans</it>-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes <it>in situ</it>. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically <it>trans</it>-splice a new RNA sequence downstream of the targeted site <it>in vitro </it>and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC.</p> <p>Conclusions</p> <p>Analysis shows that our αDENV-GrpIs have the ability to effectively <it>trans</it>-splice the DENV genome <it>in situ</it>. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.</p

    Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies

    Get PDF
    Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue

    Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    Get PDF
    Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization.Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons.This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model evaluation

    Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?

    Get PDF
    Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an α-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour Wolbachia; however, current data suggest that its presence in aphids has been missed, probably due to the low titre of the infection and/or to the high divergence of the Wolbachia strains of aphids. The goal of the present study is to map the Wolbachia infection status of natural aphids populations, along with the characterization of the detected Wolbachia strains. Out of 425 samples from Spain, Portugal, Greece, Israel and Iran, 37 were found to be infected. Our results, based mainly on 16S rRNA gene sequencing, indicate the presence of two new Wolbachia supergroups prevailing in aphids, along with some strains belonging either to supergroup B or to supergroup A

    Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean

    Get PDF
    The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p
    corecore