215 research outputs found

    Vortex states in binary mixture of Bose-Einstein condensates

    Full text link
    The vortex configurations in the Bose-Einstein condensate of the mixture of two different spin states |F=1,m_f=-1> and |2,1> of ^{87}Rb atoms corresponding to the recent experiments by Matthews et. al. (Phys. Rev. Lett. 83, 2498 (1999)) are considered in the framework of the Thomas-Fermi approximation as functions of N_2/N_1, where N_1 is the number of atoms in the state |1,-1> and N_2 - in the state |2,1>. It is shown that for nonrotating condensates the configuration with the |1,-1> fluid forming the shell about the |2,1> fluid (configuration "a") has lower energy than the opposite configuration (configuration "b") for all values of N_2/N_1. When the |1,-1> fluid has net angular momentum and forms an equatorial ring around the resting central condensate |2,1>, the total energy of the system is higher than the ground energy, but the configuration "a" has lower energy than the configuration "b" for all N_2/N_1. On the other hand, when the |2> fluid has the net angular momentum, for the lowest value of the angular momentum \hbar l (l=1) there is the range of the ratio N_2/N_1 where the configuration "b" has lower energy than the configuration "a". For higher values of the angular momentum the configuration "b" is stable for all values of N_2/N_1.Comment: minor changes, references adde

    Vortex nucleation in Bose-Einstein condensates in time-dependent traps

    Full text link
    Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. It is found that this theory is able to describe the creation of vortices, but not the crystallization of a vortex lattice. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center.Comment: 22 pages, 7 figures. Changes after referee report: one new figure, new refs. No conclusions altere

    Vortices in superfluid trapped Fermi gases at zero temperature

    Full text link
    We discuss various aspects of the vortex state of a dilute superfluid atomic Fermi gas at T=0. The energy of the vortex in a trapped gas is calculated and we provide an expression for the thermodynamic critical rotation frequency of the trap for its formation. Furthermore, we propose a method to detect the presence of a vortex by calculating the effect of its associated velocity field on the collective mode spectrum of the gas

    Elementary excitations of trapped Bose gas in the large-gas-parameter regime

    Full text link
    We study the effect of going beyond the Gross-Pitaevskii theory on the frequencies of collective oscillations of a trapped Bose gas in the large gas parameter regime. We go beyond the Gross-Pitaevskii regime by including a higher-order term in the interatomic correlation energy. To calculate the frequencies we employ the sum-rule approach of many-body response theory coupled with a variational method for the determination of ground-state properties. We show that going beyond the Gross-Pitaevskii approximation introduces significant corrections to the collective frequencies of the compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.

    Mass Splitting and Production of Σc0\Sigma_c^0 and Σc++\Sigma_c^{++} Measured in 500GeV500 {GeV} π\pi^- -N Interactions

    Full text link
    From a sample of 2722±782722 \pm 78 Λc+\Lambda_c^+ decaying to the pKπ+pK^-\pi^+ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, 143±20143 \pm 20 Σc0\Sigma_c^0 and 122±18122 \pm 18 Σc++\Sigma_c^{++} through their decays to Λc+π±\Lambda_c^+ \pi^{\pm}. The mass difference M(Σc0)M(Λc+M(\Sigma_c^0) - M(\Lambda_c^+) is measured to be (167.38±0.29±0.15)MeV(167.38\pm 0.29\pm 0.15) {MeV}; for M(Σc++)M(Λc+)M(\Sigma_c^{++}) - M(\Lambda_c^+), we find (167.76±0.29±0.15)MeV(167.76\pm 0.29\pm0.15) {MeV}. The rate of Λc+\Lambda_c^+ production from decays of the Σc\Sigma_c triplet is (22\pm 2\pm 3) {%} of the total Λc+\Lambda_c^+ production assuming equal rate of production from all three, as measured for Σc0\Sigma_c^0 and Σc++\Sigma_c^{++}. We do not observe a statistically significant Σc\Sigma_c baryon-antibaryon production asymmetry. The xFx_F and pt2p_t^2 spectra of Λc+\Lambda_c^+ from Σc\Sigma_c decays are observed to be similar to those for all Λc+\Lambda_c^+'s produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed fil

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Precise measurements of W- and Z-boson transverse momentum spectra with the ATLAS detector using pp collisions at t √s = 5.02 TeV and 13 TeV

    Get PDF

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported
    corecore