7,670 research outputs found

    Ascent from the lunar surface

    Get PDF
    Ascent from lunar surface problem with solution by variational calculu

    Axially Symmetric Solutions for SU(2) Yang-Mills Theory

    Get PDF
    By casting the Yang-Mills-Higgs equations of an SU(2) theory in the form of the Ernst equations of general relativity, it is shown how the known exact solutions of general relativity can be used to give similiar solutions for Yang-Mills theory. Thus all the known exact solutions of general relativity with axial symmetry (e.g. the Kerr metric, the Tomimatsu-Sato metric) have Yang-Mills equivalents. In this paper we only examine in detail the Kerr-like solution. It will be seen that this solution has surfaces where the gauge and scalar fields become infinite, which correspond to the infinite redshift surfaces of the normal Kerr solution. It is speculated that this feature may be connected with the confinement mechanism since any particle which carries an SU(2) color charge would tend to become trapped once it passes these surfaces. Unlike the Kerr solution, our solution apparently does not have any intrinsic angular momentum, but rather appears to give the non-Abelian field configuration associated with concentric shells of color charge.Comment: 15 pages LaTe

    Analysis of dynamic stall using unsteady boundary-layer theory

    Get PDF
    The unsteady turbulent boundary layer and potential flow about a pitching airfoil are analyzed using numerical methods to determine the effect of pitch rate on the delay in forward movement of the rear flow reversal point. An explicit finite difference scheme is used to integrate the unsteady boundary layer equations, which are coupled at each instant of time to a fully unsteady and nonlinear potential flow analysis. A substantial delay in forward movement of the reversal point is demonstrated with increasing pitch rate, and it is shown that the delay results partly from the alleviation of the gradients in the potential flow, and partly from the effects of unsteadiness in the boundary layer itself. The predicted delay in flow-reversal onset, and its variation with pitch rate, are shown to be in reasonable agreement with experimental data relating to the delay in dynamic stall. From the comparisons it can be concluded (a) that the effects of time-dependence are sufficient to explain the failure of the boundary layer to separate during the dynamic overshoot, and (b) that there may be some link between forward movement of the reversal point and dynamic stall

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    Thermal radiation of various gravitational backgrounds

    Get PDF
    We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasi--classical tunneling of particles through a gravitational barrier. We show that our procedure can reproduce the results of Hawking and Unruh radiation. We also show that under certain kinds of coordinate transformations the temperature of the thermal radiation will change in the case of the Schwarzschild black holes. In addition we apply our procedure to a rotating/orbiting system and show that in this case there is no radiation, which has experimental implications for the polarization of particles in circular accelerators.Comment: 6 pages revtex, added references, publication version. To be published IJMP

    The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit

    Get PDF
    Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity

    Phantom energy from graded algebras

    Full text link
    We construct a model of phantom energy using the graded Lie algebra SU(2/1). The negative kinetic energy of the phantom field emerges naturally from the graded Lie algebra, resulting in an equation of state with w<-1. The model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which can be taken as two component dark matter. A potential term is generated for both the phantom fields and the ordinary scalar fields via a postulated condensate of the Grassmann vector fields. Since the phantom energy and dark matter arise from the same Lagrangian the phantom energy and dark matter of this model are coupled via the Grassman vector fields. In the model presented here phantom energy and dark matter come from a gauge principle rather than being introduced in an ad hoc manner.Comment: 8 pages no figures; references added and discussion on condensate of vector grassman fields added. To be published MPL

    Electromagnetic field angular momentum in condensed matter systems

    Full text link
    Various electromagnetic systems can carry an angular momentum in their {\bf E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of these systems can combine with the spin angular momentum to give composite fermions or composite bosons. In this paper we examine the possiblity that an EMAM could provide an explanation of the fractional quantum Hall effect (FQHE) which is complimentary to the Chern-Simons explanation. We also examine a toy model of a non-BCS superconductor (e.g. high TcT_c superconductors) in terms of an EMAM. The models presented give a common, simple picture of these two systems in terms of an EMAM. The presence of an EMAM in these systems might be tested through the observation of the decay modes of a charged, spin zero unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.

    Periodic Instantons in SU(2) Yang-Mills-Higgs Theory

    Get PDF
    The properties of periodic instanton solutions of the classical SU(2) gauge theory with a Higgs doublet field are described analytically at low energies, and found numerically for all energies up to and beyond the sphaleron energy. Interesting new classes of bifurcating complex periodic instanton solutions to the Yang-Mills-Higgs equations are described.Comment: 11 pages, 3 figures (in 5 included eps files), ReVTeX (minor typos corrected and reference added
    corecore