7,670 research outputs found
Ascent from the lunar surface
Ascent from lunar surface problem with solution by variational calculu
Axially Symmetric Solutions for SU(2) Yang-Mills Theory
By casting the Yang-Mills-Higgs equations of an SU(2) theory in the form of
the Ernst equations of general relativity, it is shown how the known exact
solutions of general relativity can be used to give similiar solutions for
Yang-Mills theory. Thus all the known exact solutions of general relativity
with axial symmetry (e.g. the Kerr metric, the Tomimatsu-Sato metric) have
Yang-Mills equivalents. In this paper we only examine in detail the Kerr-like
solution. It will be seen that this solution has surfaces where the gauge and
scalar fields become infinite, which correspond to the infinite redshift
surfaces of the normal Kerr solution. It is speculated that this feature may be
connected with the confinement mechanism since any particle which carries an
SU(2) color charge would tend to become trapped once it passes these surfaces.
Unlike the Kerr solution, our solution apparently does not have any intrinsic
angular momentum, but rather appears to give the non-Abelian field
configuration associated with concentric shells of color charge.Comment: 15 pages LaTe
Analysis of dynamic stall using unsteady boundary-layer theory
The unsteady turbulent boundary layer and potential flow about a pitching airfoil are analyzed using numerical methods to determine the effect of pitch rate on the delay in forward movement of the rear flow reversal point. An explicit finite difference scheme is used to integrate the unsteady boundary layer equations, which are coupled at each instant of time to a fully unsteady and nonlinear potential flow analysis. A substantial delay in forward movement of the reversal point is demonstrated with increasing pitch rate, and it is shown that the delay results partly from the alleviation of the gradients in the potential flow, and partly from the effects of unsteadiness in the boundary layer itself. The predicted delay in flow-reversal onset, and its variation with pitch rate, are shown to be in reasonable agreement with experimental data relating to the delay in dynamic stall. From the comparisons it can be concluded (a) that the effects of time-dependence are sufficient to explain the failure of the boundary layer to separate during the dynamic overshoot, and (b) that there may be some link between forward movement of the reversal point and dynamic stall
The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited
The charged particle stopping power in a highly ionized and weakly to
moderately coupled plasma has been calculated to leading and next-to-leading
order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas
behind this calculation, we use a Fokker-Planck equation derived by BPS to
compute the electron-ion energy partitioning of a charged particle traversing a
plasma. The motivation for this application is ignition for inertial
confinement fusion -- more energy delivered to the ions means a better chance
of ignition, and conversely. It is therefore important to calculate the
fractional energy loss to electrons and ions as accurately as possible, as this
could have implications for the Laser Megajoule (LMJ) facility in France and
the National Ignition Facility (NIF) in the United States. The traditional
method by which one calculates the electron-ion energy splitting of a charged
particle traversing a plasma involves integrating the stopping power dE/dx.
However, as the charged particle slows down and becomes thermalized into the
background plasma, this method of calculating the electron-ion energy splitting
breaks down. As a result, the method suffers a systematic error of order T/E0,
where T is the plasma temperature and E0 is the initial energy of the charged
particle. In the case of DT fusion, for example, this can lead to uncertainties
as high as 10% or so. The formalism presented here is designed to account for
the thermalization process, and in contrast, it provides results that are
near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical
Society meeting on plasma physic
Recommended from our members
Revisiting the one in four: the prevalence of psychiatric disorder in the population of England 2000-2014
Mental health problems are often said to affect one in four people in Britain, although with no consistent explanation of what the figure includes. We used three English national population surveys of psychiatric morbidity from 2000, 2007 and 2014 to provide prevalence rates for recent psychiatric problems. We combined disorders progressively to demonstrate the effects of cumulation. Psychosis had a prevalence of around 1%, severe common mental disorders added about 8%, and including less-severe common mental disorders gave a value around one in six. The figure of one in four required the inclusion of various other disorders. These values were strikingly stable over the surveys
Thermal radiation of various gravitational backgrounds
We present a simple and general procedure for calculating the thermal
radiation coming from any stationary metric. The physical picture is that the
radiation arises as the quasi--classical tunneling of particles through a
gravitational barrier. We show that our procedure can reproduce the results of
Hawking and Unruh radiation. We also show that under certain kinds of
coordinate transformations the temperature of the thermal radiation will change
in the case of the Schwarzschild black holes. In addition we apply our
procedure to a rotating/orbiting system and show that in this case there is no
radiation, which has experimental implications for the polarization of
particles in circular accelerators.Comment: 6 pages revtex, added references, publication version. To be
published IJMP
The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity
Phantom energy from graded algebras
We construct a model of phantom energy using the graded Lie algebra SU(2/1).
The negative kinetic energy of the phantom field emerges naturally from the
graded Lie algebra, resulting in an equation of state with w<-1. The model also
contains ordinary scalar fields and anti-commuting (Grassmann) vector fields
which can be taken as two component dark matter. A potential term is generated
for both the phantom fields and the ordinary scalar fields via a postulated
condensate of the Grassmann vector fields. Since the phantom energy and dark
matter arise from the same Lagrangian the phantom energy and dark matter of
this model are coupled via the Grassman vector fields. In the model presented
here phantom energy and dark matter come from a gauge principle rather than
being introduced in an ad hoc manner.Comment: 8 pages no figures; references added and discussion on condensate of
vector grassman fields added. To be published MPL
Electromagnetic field angular momentum in condensed matter systems
Various electromagnetic systems can carry an angular momentum in their {\bf
E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of
these systems can combine with the spin angular momentum to give composite
fermions or composite bosons. In this paper we examine the possiblity that an
EMAM could provide an explanation of the fractional quantum Hall effect (FQHE)
which is complimentary to the Chern-Simons explanation. We also examine a toy
model of a non-BCS superconductor (e.g. high superconductors) in terms of
an EMAM. The models presented give a common, simple picture of these two
systems in terms of an EMAM. The presence of an EMAM in these systems might be
tested through the observation of the decay modes of a charged, spin zero
unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.
Periodic Instantons in SU(2) Yang-Mills-Higgs Theory
The properties of periodic instanton solutions of the classical SU(2) gauge
theory with a Higgs doublet field are described analytically at low energies,
and found numerically for all energies up to and beyond the sphaleron energy.
Interesting new classes of bifurcating complex periodic instanton solutions to
the Yang-Mills-Higgs equations are described.Comment: 11 pages, 3 figures (in 5 included eps files), ReVTeX (minor typos
corrected and reference added
- …
