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I 

The coupled unsteady turbulent boundary layer and poten t ia l  flow about 

a pitching a i r f o i l  are analyzed using numerical methods t o  determine 

the effect  of pi tch r a t e  on the delay i n  forward movement of the rear  

flow reversal  point. An expl ic i t  f i n i t e  difference scheme is used t o  

integrate the unsteady boundary layer equations, which are coupled a t  

each instant  of time t o  a fully unsteady and nonlinear po ten t ia l  flow 

analysis. 

point i s  demonstrated w i t h  increasing p i tch  ra te ,  and it i s  shown tha t  

the delay resu l t s  par t ly  from the alleviation of the gradients i n  the 

poten t ia l  flow, and par t ly  from the effects  of unsteadiness i n  the 

boundary layer i t s e l f .  

A substant ia l  delay i n  forward movement of the reversal  

The predicted delay i n  flow-reversal onset, and i t s  var ia t ion w i t h  p i tch 

ra te ,  a re  shown t o  be i n  reasonable agreement w i t h  experimental data 

r e l a t ing  to the delay i n  dynamic s t a l l .  From the comparisons it can be 

concluded (a) tha t  the effects  of the-dependence are suff ic ient  t o  

explain the fa i lure  of the boundary layer t o  separate during the dynamic 

overshoot, and (b) tha t  there may be some l ink between forward movement 

of the reversal  point and dynamic s t a l l .  
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I ANALYSIS OF DYNAMIC STALL 
* 

USING UNSTEADY BOUNDARY-LAYER THEORY 

by 
4- R. M. Scruggs, J. E. Nash, R. E. Singleton 

(+ now, Chief, Fluid Mechanics Branch, A r m y  Research Office, Duke Station. 
Durham, N. C.) 

! Introduction 

I The phenomenon of dynakc s t a l l ,  or  delay of the angle of s t a l l  due t o  

unsteady motion, has been the subject of intense investigation fo r  

I several  years. There remains some controversy as t o  the exact 

mechanisms responsible fo r  the delay, and the extent t o  which each is  

responsible. Dynamic s ta l l  i s  identified as a l imiting factor  i n  the 

design of high speed helicopters, and attempts t o  predict  control linkage 

loads due t o  it have not met w i t h  great success. From the outset, 

experimental work has proceeded along l ines intended t o  simulate ac tua l  

f l i gh t  conditions for a helicopter rotor. From these data, design 

oriented prediction methods have evolved, and t o  the  extent tha t  t e s t  

cases represent design conditions of new a i r c ra f t ,  the empirical methods 

resul t ing from such t e s t s  have generated reasonable design envelope 

values . (2) It has been demonstrated that three-dimensional effects  

associated w i t h  rotor  geometry do not contribute s ignif icant ly  i n  the 

onset of s t a l l  f l u t t e r  f o r  a helicopter. (3) 

t h a t  three-dimensional effects  associated with the steady turbulent 

It has f'urther been shown 



boundary layer  of the ro tor  are  not of significance i n  the s t a l l  delay 

phen~menon'~) . These r e su l t s  lend encouragement t o  the development of 

a two-dimensional, o r  quasi two-dimensional, theory capable of predict-  

ing dynamic s t a l l  and the consequent s t a l l  f l u t t e r  excursions. 

Several approaches have been taken i n  the past  t o  t r ea t ing  dynamic 

s ta l l .  Most have attacked the complete phenomenon, from pre-separation 

through the circulat ion loss  and return t o  attached flow. Notable 

contributions have been made by Ham(5) , Carta, e t  al. ( 6 )  , Ericsson 

and Re13.ing(~) , Cr imi (8 ) ,  and others. Several methods i n  present use 

are  predicated on the unsteady aerodynamics of an a i r f o i l  o sc i l l a t ing  

i n  s ta l l  with a prescribed amplitude. 

experimental data were obtained i n  t h i s  way, with only m i l d  var ia t ions 

i n  the  osc i l la tory  form allowed. It i s  d i f f i c u l t  t o  i so l a t e  the 

various mechanisms i n  such data because of his tory e f fec ts  i n  the flow 

and because dynamic s t a l l  i s  almost cer ta in ly  dependent on the particu- 

lar  motion of the a i r f o i l  before and during the s t a l l  break. 

Unfortunately most exis t ing 

A number of phenomena may share roles  of importance i n  dynamic s t a l l .  

The unsteady pressure d is t r ibu t ion  has been shown t o  be of importance 

due t o  the a l lev ia t ion  of gradients over the  a i r f o i l  upper surface. 

It has been argued t h a t  the Karman-Sears/Theodorsen representation Of 

unsteady-potential flow could account fo r  par t  of the  overshoot i n  lift. 

A s  developed f o r  the  l i nea r  perturbation problem these theories  account 

for lift lag  and attenuation, and it i s  d i f f i c u l t  t o  justif 'y t h e i r  Use 

i n  the s t a l l  problem. 

involved, it should be assumed tha t  non-linear po ten t i a l  f l o w  i s  

(9) 

Because of t he  r a t e s  and amplitudes of motion 

2 



involved. However, the pressure gradient present i n  the Karman-Sears 

type theory i s  of the correct behavior, as  shown by Carta. (9) 

The leading edge bubble, common t o  many a i r f o i l s  used fo r  helicopter 

rotors,  may well  play an important part i n  s t a l l  delay. 

burst  c r i te r ion  has been developed by Crimi ('') f o r  determining the 

A bubble- 

s t a l l  condition. Other phenomenological devices have been used with 

some success, such as induced camber(7), and the "spinning cylinder" 

e f fec t  a t  the leading edge, as given by Ericsson and Reding. ( 11) 

The ac tua l  process of flow breakdown at the instant of s t a l l  has been 

a point of some controversy i n  the past. 

M~Croskey(~) ,  and the work of Ham(5), and Scruggs('), indicate the 

presence of discrete  leading edge vortex rol lup a t  s tall .  

including C r i m i ( " ) ,  have developed the idea of a "deadwater" region 

immediately following bubble-burst at  s t a l l .  

The observations of 

Others, 

Serious theore t ica l  

quest ions concerning the time-dependent boundary-layer development 

come in to  play from t h i s  issue. 

flow breakdown it is  f irst  necessary to  carefully analyze the behavior 

In order t o  resolve the  question of 

of the unsteady boundary layer as the s t a l l  condition i s  approached. 

L i t t l e  consideration has been given the unsteady boundary layer i n  

dynamic-stall theories , although i t s  importance has been recognized, 

or implied, by several  researchers. One of the  first attempts t o  

investigate the significance of boundary-layer e f fec ts  on a trans- 

l a t ing  ro tor  was  made by Hicks and Nash. (4) 

t h a t  three-dimensionality i n  the boundary layer had a small but s ign i f i -  

Their calculations showed 

call+, effect. n ~ l  separskion. However, the more important resu l t  was tha t  

3 



both the  two-and the three-dimensional calculations were found t o  be 

seriously pessimistic when the predicted separation boundaries were 
I 

compared with t e s t  resu l t s  f o r  an ac tua l  rotor.  

at tr ibuted chiefly t o  the  neglect of time dependence i n  the boundary- 

layer equations. 

on the dynamic-stall problem taken i n  the  present investigations. 

This perspective concentrates on the mechanism by which the  boundary 

layer manages t o  remain attached during the  dynamic overshoot, rather 

than on the mechanism by which s t a l l  f i na l ly  does take place. 

significant ra tes  of pitch,  the  boundary layer stays attached t o  the 

a i r f o i l  -- o r  a t  leas t  behaves as though it were s t i l l  attached -- at  

angles of incidence substant ia l ly  higher than could occur under S t a t i c  

conditions. 

The discrepancy was  

It w a s  a l so  a major factor  leading t o  the  perspective 

A t  

The suggestion that  unsteady effects  i n  the boundary layer i tself  (as 

d is t inc t  t o  those i n  the external  flow) cause, o r  contribute t o  the  

tenacity of the boundary layer referred t o  above, w a s  confirmed by the 

work of Singleton e t  a l .  (13) and Nash e t  a l .  (I4) 

tha t  the-dependence resu l t s  i n  a delay i n  the  onset of flow reversa l  

i n  the boundary layer, and that  th i s  delay could be large under 

conditions simulating the  flow over an a i r f o i l  i n  upward pitching 

motion. 

d i s t inc t  phenomena. 

of the  boundary layer, adjacent t o  the a i r f o i l  surface, and i t s  onset 

corresponds t o  the vanishing on the w a l l  shear s t r e s s .  

the other hand, refers  t o  detachment of the outer  flow from t h e  a i r f o i l  

Their work showed 

Now, i n  unsteady flow, reversal  and separation are generally 

Reversal re fers  t o  conditions i n  the inner part 

Separation, on 

4 
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contour, and the breakdown of the boundary-layer equations. The work 

of Sears and Telionis(15) indicates that ,  fo r  flows of the present type, 

separation would always occw l a t e r  than reversal. Thus, any prediction 

of the delay i n  flow-reversal onset has t o  be regarded as a conservative 

estimate of the delay i n  separation onset. Correspondingly, 

i s  the point which i s  relevant t o  the  present studies,  i f  it can be 

shown tha t  reversal  i s  avoided over some range of incidence, due t o  

dynamic effects ,  then it can safely be concluded tha t  separation w i l l  be 

avoided over at leas t  the same range of incidence. 

re fer  only t o  the upstroke of the a i r f o i l  motion, which i s  the si tua- 

t i o n  addressed herein; under conditions corresponding t o  the downstroke, 

separation preceeds reversal  and avoidance of reversal  does not imply 

avoidance of separation. 

and t h i s  

These coments 

The work of References (13,14) examined the nature of the unsteadiness 

i n  a boundary layer devel-oping i n  a prescribed external velocity dis- 

t r ibut ion.  

more general than this ,  insofar as the external velocity f i e l d  i t s e l f  

depends on the pi tch ra te .  Thus a second source of unsteady effects  

is  presented by the departure of  t h e  external  velocity dis t r ibut ion,  

at any given incidence, from i t s  form i n  steady flow. 

unsteadiness are considered i n  the present calculations, and one of the 

objectives of the present study was t o  determine t h e i r  re la t ive  import- 

ance i n  the context of flow-reversal onset. 

The flow over an a i r f o i l  i n  pitching motion i s ,  however, 

Both sources of 

5 



THEORETICAL DEVELOPMENT 

A two-dimensional, t h e  dependent flow i s  assumed. For a l l  conditions 

preceding t h a t  of s ta l l ,  the outer po ten t ia l  flow i s  assumed t o  be 

circulation preserving. The viscous flow near the a i r f o i l  surface i s  

assumed t o  obey boundary layer assumptions u n t i l  the  loca l  surface shear 

s t ress  f a l l s  t o  zero and the displacement thickness diverges, indicating 

the approach t o  separation. 

i n  the simplest possible unsteady flow consistent w i t h  observed experi- 

mental cases, it i s  assumed t h a t  the a i r f o i l  begins a p i tch  motion about 

i t s  quarter-chord from a steady, zero angle-of-attack i n i t i a l  condition, 

and pitches a t  a constant r a t e  u n t i l  the  point of flow reversal  on the  

upper surface moves t o  the  v i c in i ty  of the leading edge. 

In  order t o  ident i fy  the  separation dynamics 

The concept of one-way coupling i s  employed and, as  depicted i n  Figure 1, 

assumes that  during the motion of the  a i r f o i l  the boundary layer  remains 

suff ic ient ly  t h i n  t h a t  the  unsteady po ten t i a l  flow i s  unaffected by it. 

This i s  the usual assumption made i n  a i r f o i l  calculations.  However it 

should be noted tha t  i t s  va l id i ty  i s  improved i n  unsteady flows of the  

type considered here because the displacement thickness is  g e n e r a l b  

smaller than i n  equivalent steady flows: t h i s  i s  t r u e  near the  point of 

flow reversal  and elsewhere. The po ten t i a l  flow develops i n  response 

t o  the a i r f o i l  motion i n  a c i rcu la t ion  preserving manner and imposes a 

pressure d is t r ibu t ion  on the  a i r f o i l  which i s  time dependent. 

mathematical model appropriate t o  the  descr ipt ion of such a flow i s  

developed i n  the  following sections.  

throughout. 

The 

Incompressibility is  assumed 

6 



The Potential  Flow 

Unsteady po ten t i a l  flow consti tutes a l i nea r  problem i n  the sense tha t  

the governing d i f f e r e n t i a l  equation f o r  any po ten t i a l  flow i s  l inear .  

However i n  the time dependent case, when it i s  necessary t o  determine 

the  instantaneous tangent ia l  veloci t ies  on a moving boundary the 

algebraic resolution of the problem exhibi ts  numerical d i f f i c u l t i e s  

s imilar  t o  those encountered i n  t h e  solut ion of a non-linear differen- 

t i a l  equation. A method due t o  Giesing(I6) is  used i n  the present 

investigation t o  determine the  time-dependent pressure dis t r ibut ion,  t o  

be imposed on the boundary layer,  due t o  an a rb i t r a ry  motion of the 

a i r f o i l  i n  a two dimensional, incompressible po ten t i a l  flow. The a i r -  

f o i l  used throughout t h i s  investigation i s  the NACA 0012 section. The 

surface i s  defined fo r  numerical purposes by 65 control points,  d i s t r i -  

buted so as t o  give optimum defini t ion of the unsteady velocity prof i les  

on the  surface. The motion of the a i r f o i l  begins from zero angle of 

attack t o  a uniform stream, and pitch-up commences w i t h  a constant 

p i t c h  r a t e  cy , resu l t ing  i n  an angle of a t tack time his tory as shown 

i n  Figure 1. 

modification i n  a i r f o i l  loading a t  low angles of a t tack as w i l l  be seen. 

The flow i s  assumed t o  be circulation preserving and vo r t i c i ty  i s  

The discontinuity i n  a t  time zero causes a s l igh t  

re leased i n  the  wake a t  each time s tep of the computation such tha t  

the sum of c i rculat ion about the  a i r f o i l  and i n  the wake remains 

constant, t h a t  i s  

Y(s)ds = 0 , 



where the sum i n  t h i s  case i s  zero since the a i r f o i l  starts from zero 

angle of attack. The wake v o r t i c i t y  i s  released i n  the neighborhood 

of the  t r a i l i n g  edge at a l l  times during the motion and the  boundary 

layer is  assumed t o  have no e f f ec t  on the potent ia l  flow. 

si tuation i s  depicted i n  Figure 1. 

This 

The pressure a t  any point i n  the  flow, as computed from a coordinate 

(17) system fixed i n  the  a i r f o i l ,  is  

where 6 
a i r f o i l  coordinate system and 6 
a i r f o i l  frame of reference r e l a t ive  t o  i n e r t i a l  coordinates. 

i s  the velocity vector at a point as measured i n  the  

i s  the velocity vector of the r 

For t h e  viscous flow near the a i r f o i l  surface the equations Of motion 

are  of the form, 

- where i s  the rotation r a t e  of the a i r f o i l ,  r i s  the  posi t ion 

vector i n  a i r f o i l  coordinates, and 

the stresses. 

be 

5 i s  a cons t i tu t ive  vector for  

A t  the outer edge of the  viscous flow l e t  t he  veloci ty  

Qe 9 then the equations of motion a re  

DQe 
P [ F  + 2 (il x 6, + 6 x (i x ;)I= - grad p.  (4) 



The two cross-product terms i n  equations (3) and (4) are apparent 

acceleration terms due, i n  the present case, t o  the pi tch r a t e  of the 

a i r f o i l  coordinate system. 

i n e r t i a l  coordinates, equation (2), has terms which ju s t  balance the 

apparent acceleration terms i n  equations (3) and (4 ) .  

couple the boundary layer approximation of equation ( 3 ) ,  which form w i l l  

be given l a t e r ,  t o  the  unsteady potent ia l  flow it is  desirable t o  remove 

the  non-inertial  terms. 

p from equation (4), Then 

The unsteady Bernoulli equation i n  non- 

In order t o  

This i s  accomplished by substi tuting fo r  grad 

DQ F "e 
D t  p D t  (5) 

To the boundary layer approximation the  r igh t  hand side of t h i s  

equation ( 5 )  becomes 

where Ue i s  the velocity tangent t o  the a i r f o i l  a t  posit ion s as 

measured i n  a i r f o i l  coordinates. 

The cent r ipe ta l  acceleration along the surface thus removed was found t o  

be small for the  cases considered i n  the present work, being proportional 

t o  

It is noted tha t  the resu l t ,  equation (5),  does not remove the Coriolis 

gradient. 

and thus does not enter into the boundary layer momentum equation. 

a 2  . However fo r  higher pi tch rates t h i s  e f fec t  may become important. 

But t h i s  gradient is  everywhere normal t o  the a i r f o i l  surface 

9 



Since the poten t ia l  flow is  unaffected by the boundary layer,  it may be 

computed for  any number of t h e  steps at  each desired pi tch ra te  and 

the resulting velocity dis t r ibut ion may then be used as forcing flznction 

f o r  the boundary layer computation. The computations were made fo r  

both steady flow and unsteady flow fo r  purposes of evaluating cer ta in  

boundary layer e f fec ts ,  as w i l l  be discussed l a t e r .  In every case the 

potent ia l  f l a w  computation was  terminated when the angle of attack 

reached 25'. 

t o  .lo. 

numerical accuracy of the unsteady wake calculation, 10 time steps 

The pi tch ra te  parameter &/Urn , w a s  varied from zero 

To evaluate the The pi tch axis was taken a t  the 25% chord. 

were used and then 20 steps.  

loading could be detected for  the highest pi tch ra te  used. 

method of Giesing, an incremental vortex i s  released i n  the wake a t  

No prac t ica l  difference i n  a i r f o i l  

By the 

each step i n  time. 

analyzed i n  the present investigation the wake roll-up i s  suf f ic ien t ly  

It appears tha t  even fo r  the most unsteady case 

well  represented by 10 incremental vortices.  

the conclusion of Geising fo r  the highly unsteady s tep-s ta r t  condition. 

This resu l t  agrees with 

(16) 

Figure  2 shows a comparison of the lift coefficient versus angle of 

attack resul t ing from the poten t ia l  flow program fo r  steady and unsteady 

flow. The ef fec t  of the s tep input of Q i s  evident a t  the lower angles 

of attack, which corresponds t o  short intervals  of t h e  a f t e r  i n i t i a t i n g  

the motion. Figure 3 and Figure 4 show the veloci ty  and pressure 

distributions respectively over the upper surface of the NACA 0012 at an 

angle o f  at tack of 15' for  the steady and unsteady conditions. 

c lear  t h a t  the unsteady dis t r ibut ions for  

1% is  

&/Urn = .06, show considerable 
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a l lev ia t ion  of gradients over most of the surface. O f  course these 

figures only depict one instant of t h e  i n  comparing the steady, o r  

quasi-steady, and the unsteady flows. The a l lev ia t ion  of gradient i s  

present t o  a greater o r  lesser  extent throughout the pitch-up motion. 

It can be expected t o  contribute t o  a delay i n  boundary-layer flow 

reversal  i n  addition t o  the delay associated with unsteadiness i n  the 

boundary layer i t s e l f .  

The Unsteady Boundary Layer 

The or ig ina l  method of Pa te l  and Nash (18) f o r  unsteady turbulent 

boundary layers has been recently improved upon and used as a basis 

for a range of computational experiments. ('31, (14), (l9) The theory 

i s  presented here for incorporation i n  a f'ull3r unsteady-flow examina- 

t i o n  of the delay i n  reversal  point movement on a p rac t i ca l  a i r fo i l .  

The method is  designed t o  calculate the time-dependent, incompressible, 

turbulent boundary layer on a two-dimensional a i r f o i l  section moving 

i n  a po ten t ia l  flow f i e ld .  

t o  the a i r f o i l  surface: s denoting distance along the surface, y the 

distance along the  loca l  normal, and x 

The radius of curvature i s  assumed t o  be everywhere large compared t o  

the  boundary layer  thickness. 

s iona l  unsteady flow. 

formulation may be found in Reference (19). 

A curvilinear coordinate system is  f i t t e d  

the distance along the chordline. 

The method i s  given here f o r  two dimen- 

A somewhat more general quasi-three-dimensional 

The ve loc i t ies  i n  the s and y directions are  expressed i n  the form 
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U + u, V + v, where a l l  components are fbnctions of t. 

The components, U(s,y,t) and V(s,y,t) are defined as ensemble averages, 

taken over a large number of realizations of the same basic  flow, o r  

successive flows w i t h  the  same time history and boundary conditions. 

The components u and v represent the random fluctuations about U 

and 

zero. 

s ,  y ,  and time 

V, and by implication t h e i r  ensemble averages are ident ical ly  

The conservation of mass then takes the form 

which can be immediately integrated t o  give V i n  quadrature form, 

0 

Applying the boundary layer approximation t o  equation ( 5 )  fo r  the  

momentum balance i n  the s-direction there  r e su l t s  

, 

where the  viscous shear s t r e s s  has been neglected and L e  turbulent 

shear s t ress ,  T , i s  the ensemble average, 

- 
7 = - p u v .  

12 
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The turbulent shear s t r e s s  i s  assumed t o  behave according t o  a ra te  

equation which follows from those given fo r  three dimensional 

flows, (20)  ’ ( 2 2 )  but with the convective derivative extended t o  include 

the time derivative, (18) 

- 312 
= o .  uv - a 

3.Y L + - (a2 uv) + - 

For most of the calculations, a1 , a , and L are assumed t o  be 

the same f’unctions as appear i n  the ear l ie r  steady and unsteady three- 

(I9) ’(*’) * dimensional methods 

i n  Figure 5 ,  and a1 i s  ta.ken t o  be the usual constant (= 0.15). The 

va l id i ty  of these empirical f’unctions has never been checked d i rec t ly ,  

and L a re  shown by the sol id  curves ’ “2 

for unsteady flow, because of the lack of experimental data. In  order 

t o  determine the sens i t iv i ty  of the results t o  changes of the dissipa- 

t i o n  length function (the most c r i t i c a l  one), some calculations were 

done using the dashed curve i n  Figure 5. The f la t  dissipation length, 

over t he  outer par t  of the boundary layer, leads t o  a more constant 

d i s t r ibu t ion  of turbulent k ine t ic  energy. It w a s  found, however, t ha t  

the calculated velocity prof i les  and the  predicted point of flow reversal  

were almost indistinguishable from the resu l t s  corresponding t o  the 

o r ig ina l  dissipation length. Uncertainties i n  the empirical functions 

do not, therefore, seem l ike ly  t o  put the present resu l t s  seriously i n  

question. 

Since the  turbulent boundary layer thickness varies rapidly lii botk; 
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space and time, the extent of the domain of numerical integration i s  a 

variable calculated continuously as the computation proceeds. Thus a 

t rans  format ion 

i s  introduced where f3 i s  a constant greater than unity,  and h i s  

the height of the computation. 

i n  sympathy with the boundary layer thickness 6(s , t )  , 
approximate proportionality i s  maintained between them. 

h is allowed t o  increase (o r  decrease) 

and an 

This 

proportionality cannot be made exact i n  an expl ic i t  scheme since the 

value of ah/as must be assigned before a6/as i s  known. h i s  taken 

t o  be about 1.256. y/h, Primary mesh points l i e  on curves of constant 

and are dist r ibuted nonuniformly over the height of the domain t o  

produce an increased density of points near the surface. 

are distributed such tha t  yi i s  proportional t o  (i - 1) , the 

If the points 

B 

w i l l  transform the domain into one of constant 

thickness and uniform v-step. 

Having made the transformation(11) and defining matrices as follows, 
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A =  

a 

I 2  a 

22 a J 
the  governing equations take the form 

- 
0 bll I 

b22 I t -I 

I 
I 
~ 

B =  
I 

10 

where the  a i j ' s  , bij 's  , c ' s  ( i , j  = 1,2)  are  functions of the 

dependent variables.  

integrated i n  a three-dimensional domain ( l , s , t )  

exp l i c i t ,  staggered-mesh, finite-difference scheme. A fourth-order 

accurate difference formula is  used f o r  the a m :  

i 

The system of equation (13) i s  hy-perbolic, and i s  

by means of an 

where the  subscript i denotes the value of F ( l  = qi),  

i-1 
1 n-1 ' 1. = -  (15) 
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and n = t o t a l  number of mesh points across the boundary layer. 

Equation (14) cannot be used f o r  

replaced by the th i rd  order accurate scheme: 

i = n -1 and i n  t h i s  case, it i s  

Boundary conditions for the  calculation consist o f :  

i n i t i a l  p rof i les  of U and versus y f o r  t = 0 and x, 

i n i t i a l  prof i les  of U and versus y f o r  x = 0 and a l l  t ,  

- 
uv = 0, a t  y - 1.256 au auv 

aY a Y  
- = -  = 

1.256 being the loca l  height of the integration domain, which 

varies with both x and t. 

appropriate boundary conditions at 

matching the numerical solution t o  the Law of the Wall a t  

y = 0, which are imposed by 

y/6 = 0.05. 

In the method of Singleton and Nash, (I9) integration of the above 

equations is  carried out i n  the direct ion of increasing time: 

of velocity and shear s t r e s s  being calculated f o r  a l l  

successhve planes t = constant. 

condition r e s t r i c t ing  A t  

boundary-layer thickness a t  the par t icu lar  time level .  For calculations 

of the present type, i n  which the boundary-layer thickness i s  very S m a l l  

near the  leading edge, the procedure would have l ed  t o  excessive machine 

prof i les  

x, over 

This procedure r e su l t s  i n  a s t a b i l i t y  

t o  some value which depends on the minimum 
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times. Instead, the roles  of time and chordwise posit ion were reversed. 

The present calculations were performed w i t h  the  integration advancing 

i n  the posit ive x-direction, prof i les  for a l l  t 

successive planes x = constant. A s  before, proper consideration was 

given t o  the zones of dependence and influence associated w i t h  the con- 

vection of information i n  the flow. The scheme provided f o r  e i ther  f i rs t -  

or se cond-order accuracy i n  the t h e  d i r e  c t  ion; sample calculations 

indicated l i t t l e  difference i n  the results obtained. 

being determined over 

The finite-difference molecule i s  shown i n  Figure ( 6 ) ,  and the scheme 

i s  given by 

This scheme has been shown by Nash (22) t o  be both second-order accurate 

and condit ionally s table .  

The boundary-layer calculations covered the region of non-reversal flow 

on the  a i r f o i l  (Figure 7). No attempt was made t o  penetrate beyond the 

instantaneous point of flow reversal, a t  each time level ,  although 

t h i s  has been done i n  more recent calculations which are continuing at the 

time of writing. 

l i ne ,  

and which moves forward as the angle of incidence increases with time. 

The present calculations were s ta r ted  a t  a " t ransi t ion 

11 which is assumed t o  coincide with the suction peak on the a i r f o i l ,  



I simple quasi-steady laminar calculations were performed f o r  the region 

between the instantaneous stagnation l i ne  and the t r ans i t i on  l i n e  as 

defined above. It was decided t o  maintain continuity of momentum 

thickness across the  t r ans i t i on  l i ne  i f  the Reynolds number based on 

momentum thickness, Re,  exceeded 320 (assumed t o  be the minimum value 

for a fully-developed turbulent boundary layer) .  If the value of Re 

f romthe  laminar calculation, was less  than 320, it was decided t o  impose 

a s tep change i n  momentum thickness t o  br ing 
Re 

minimum level. 

a l l  t he  calculations done i n  t h i s  study(in fac t  up t o  a chord Reynolds 

number of 3 x 10 ) .  The i n i t i a l  veloci ty  and shear-stress prof i les  

were then constructed, using the momentum thickness derived i n  t h i s  

manner, as though the boundary layer corresponded loca l ly  t o  steady 

flow over a f la t  p la te .  

i n i t i a l  prof i les  was clear ly  crude. 

throughout the calculations,  and fortunately the  r e su l t s  did not seem 

unduly sensit ive t o  small changes f romthe  assumed conditions. 

detai led treatment of the i n i t i a l  conditions i s  needed, although it 

involves the very complex problem of unsteady t r a n s i t i o n  near a high 

suction peak. 

before re l iable  guidelines can be provided for  calculations of the present 

type. 

up t o  the prescribed 

It emerged that  the s tep  change w a s  necessary i n  v i r tua l ly  

6 

The procedure adopted f o r  generating the 

It provided a measure of consistency 

A more 

Both experimental and theo re t i ca l  work i s  probably needed 
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RFSULTS AND COMl?ARJSONS WITH EXPERlMENT 

The primary objective of t h i s  numerical study was t o  assess the effects  

of time-dependence on 

A s  noted e a r l i e r ,  these e f fec ts  a r i s e  i n  two ways: i n  the  potent ia l  

flow about the a i r f o i l  i n  unsteady motion, and i n  the response of the 

boundary layer t o  the velocity distribution imposed by the unsteady 

poten t ia l  flow. 

e f fec t  of the time-dependence and the relat ive importance of each 

component. 

the onset of flow reversal  i n  the boundary layer. 

The present work attempts t o  determine both the overal l  

For simplicity, the time history o f  t h e  a i r f o i l  motion was idealized by 

uniform motion, at zero incidence, for  t 0, followed by a constant 

r a t e  of pi tch,  fo r  t > 0. This simple s i tua t ion  provides well-defined 

i n i t i a l  conditions at  the time origin, and an unsteady flow defined by 

a s ingle  parameter thereaf ter .  

pi tch:  

The single parameter i s  the ra te  of 

Cy , which canbe  expressed non-dimensionally as  a sor t  of 

"reduced frequency'' cG?/Um, where c i s  the a i r f o i l  chord and U, , 
the free-stream speed, although the flow i s  not, of cowse, osci l la tory.  

Oscil latory flow was  avoided both because of the higher t h e  derivatives 

present and because the i n i t i a l  conditions would be d i f f i c u l t  t o  specif'y 

a t  any given instant  of time. 

The calculation was  performed i n  two steps: f irst ,  the  potential-flow 

calculation, t o  produce the external velocity d is t r ibu t ion  (as a function 

of chordwise posi t ion and time) , and then the boundary-layer calculation 

using t h i s  veloci ty  distribution. 'me caicultztlons were done on the -. 



CDC 6600 machine. Run times varied with p i tch  ra te ,  but were on the 

order of 1.5 minutes f o r  each potential-flow calculation and about the 

same for  each boundary-layer calculation. 

Analytical  Results and Discussion 

Potent ial-flow veloci ty  d is t r ibu t ions  were calculated over the upper 

surface of the  a i r f o i l ,  f o r  incidences up t o  25' and for  a range of 

p i t ch  rates:  

experimental data and also covers conditions exis t ing on typ ica l  ro tor  

blades. With 

past  t he  a i r f o i l  a t  each value of a considered. 

@/Urn , from 0 t o  0.1. This range brackets the available 

-+ 0 ,  the  r e su l t s  correspond t o  steady po ten t i a l  flow 

Interfacirg between the potential-flow calculation and the boundary- 

layer  calculation consisted of a s e t  of veloci ty  dis t r ibut ions,  

U (x ,a ) ,  together with the appropriate value of cQ'/Ua . 
however, t o  do a steady boundary-layer calculation ( c y  + 0) using the 

ex terna l  velocity dis t r ibut ions corresponding t o  unsteady po ten t i a l  flow 

(a > 0) .  Alternatively, an unsteady boundary-layer calculat ion could 

be performed using the  s e t  of ex terna l  veloci ty  d is t r ibu t ions  correspoin- 

ing t o  steady poten t ia l  flow. 

.It was possible,  
e 

Thus four combinations of conditions existed: 

1) steady po ten t i a l  flow, steady boundary layer  

2) steady poten t ia l  flow, unsteady boundary layer  

3) unsteady poten t ia l  flow, steady boundary layer  

4) unsteady poten t ia l  flow, unsteady boundary layer .  

Combination (1) represents flow at  a vanishingly small r a t e  of p i tch  
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( k  -, 0) ;  (4) represents the fully unsteady flow at some given 

&/Urn . Combinations (2) and (3) represent approximations t o  the t rue  

s t a t e  of a f f a i r s ,  i n  which time-dependence is assumed t o  be present i n  

e i the r  the poten t ia l  flow o r  the boundary layer, but not both, the 

objective being t o  determine the relative importance of each effect .  

Calculations, covering these four combinations, were performed fo r  some 

I2 values of &‘/Urn, from 0 t o  0.1, and typ ica l  s e t s  of resul ts  are  

shown i n  Figures 8 through 13. Each figure shows the movement of the 

flow-reversal point with angle of a t tack  (or w i t h  time, since the two 

are proportional t o  one another). The reversal  point i s  the point where 

the w a l l  shear s t r e s s  f irst  reaches zero. The behavior i s  qual i ta t ively 

the same i n  each case, and ca.n be divided in to  three phases. 

of incidence, below about 8’ , there i s  l i t t l e  movement of the reversal  

A t  low angles 

point away from the t r a i l i n g  edge. Then, over some fairly short range 

of incidence the reversal  point moves rapidly forward, and f ina l ly  at 

high angles of incidence the reversal point remains close t o  the leading 

edge, with l i t t l e  f’urther movement. It has t o  be recognized, of course, 

t h a t  if flow reversal  occurs substantially ahead of the t r a i l i n g  edge -- 

and is accompanied by gross boundary-layer thickening or separation -- 
then the outer po ten t ia l  flow w i l l  be d is tor ted  and the external velocity 

d is t r ibu t ion  assumed i n  the boundary-layer calculation w i l l  not be the 

correct one. Be tha t  as it may, the resu l t s  are probably r e a l i s t i c  up 

t o  incidences corresponding t o  some point i n  the region of rapid forward 

movement of reversal .  
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A t  each value of cQ,/U, , i n  Figures 8 through 13, the curve for filly 

unsteady flow (combination (4))  l i e s  t o  the r ight  of the one for  f'ully 

steady flow (combination (1)). Thus the effect  of the-dependence i s  

t o  delay the onset of significant f l a w  reversal  t o  higher angles of 

incidence. The curves corresponding t o  combinations (2), (3) l i e  

between those for  filly steady flow and filly unsteady flow, indicating 

tha t  the two components of the time-dependence each serve t o  delay flow 

reversal, compared with the steady case. The incremental effects  are of 

roughly the same magnitude, and hence it may be concluded tha t  the 

components of unsteadiness i n  the poten t ia l  flow and i n  the boundary 

layer, are both important. The two increments are  not precisely additive,  

because of non-linearities i n  the flow, and it w i l l  be noted tha t  the 

significance of the nonlinearity increases with Q, . 
A s  Q, increases, the extent of the delay i n  flow reversal  becomes greater,  

and t h e  subsequent forward movement of the reversal  point becomes pro- 

gressively more rapid. A t  the  highest values of a/ considered, there 

may be a discontinuous movement of reversal  point,  but the time steps 

were too coarse t o  judge def ini t ively.  Analysis of the behavior of the 

two increments of unsteadiness indicates t ha t  the increase of the r a t e  of 

forward movement of the reversal  point stems chiefly from the effect  Of 

time-dependence i n  the boundary layer. 

Except possibly a t  the highest values of 

the forward movement of the point of flow reversa l  is  progressive, and 

there i s  a consequent degree of a rb i t ra r iness  i n  any measure Of the 

Onset of "significant reversal". 

@/Urn considered (see above) Y 

A reasonably objective Criterion of 
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signif icant  flow reversal  would seem t o  be the movement of the reversal  

point past some par t icu lar  chordwise s ta t ion lying i n  the steep part  of 

the curves i n  Figures 8 through 13. 

appropriate s ta t ion  f o r  t h i s  purpose. 

50% chord has been selected as an 

Use of a c r i te r ion  of t h i s  nature permits discussion, i n  quantitative 

terms, of the delay i n  flow-reversal onset, w i t h  increasing pi tch ra te ,  

and Figure 14 presents the data plotted versus 

tha t  f o r  small values of 

reversal  occurs, increases l inear ly  with 

@/Urn . It is  evident 

cQ'/Urn the incidence, a t  which significant 

cQ'/Um . For large values, 

however, nonlinearit ies s e t  i n  and the  delay i n  flow reversal  appears 

t o  f l a t t e n  out t o  a maximum corresponding t o  an increment of about 8' of 

incidence. 

qual i ta t ively similar behavior, as i s  shown by the dashed and the chain- 

dotted curves i n  Figure 14. 

approximation t o  the resu l t s  f o r  fully unsteady flow. 

The two components of the e f fec t  of time-dependence exhibit 

The sum o f  these i s  seen t o  be a rough 

In addition t o  examining the movement of the flow-reversal point w i t h  

incidence, it i s  instruct ive t o  observe development of the boundary 

layer  during the approach t o  incipient reversal .  Figure 15 shows the 

chordwise var ia t ion of wall  shear stress a t  the instant  of time when the  

a i r f o i l  incidence equals 17.5'. These r e su l t s  i l l u s t r a t e  the delay 

i n  flow reversal  ra ther  dramatically: 

Occurs a t  about 0.2 chord, while i n  fu l ly  unsteady flow (&'/Urn = 0.06, 

here) it does not occur u n t i l  0.94 chord. The assumption of pa r t i a l ly  

i n  steady flow (Q' = 0 ) ,  reversal  

unsteady flow (e i the r  i n  the potential  flow o r  i n  the boundary layer, 

but not i n  both) yieids  intei.nied5.z-k pczit icrn,~ n f  reversal .  Figure 16 
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shows the corresponding resu l t s  for displacement thickness. A t  the 

position of steady-flow reversal  ( i n  t h i s  case, steady separation) the 

displacement thickness exhibits singular behavior, 6 

rapidly t o  in f in i ty  as the wall  shear s t ress  approaches zero. 

unsteady flow, however, the displacement thickness i s  everywhere smaller 

than i n  steady flow. 

the displacement thickness increases rapidly, but not so rapidly as 

occurred i n  the steady flow. 

Secause a U e / a t  

the 

* 
increasing 

In 

A s  the point of unsteady flow reversal  i s  approached 

A f a i r l y  rapid increase i s  t o  be expected 

is  re la t ive ly  small over the rear  of the a i r f o i l  (cf.  

resu l t s  fo r  Flow D,  i n  Reference 1 4 ) .  

Figure 17 contrasts the approach t o  unsteady flow reversal  i n  space 

( the upper figure) and i n  time ( the lower figure) ; l oca l  incidence i s  

used here as the measure of time. 

par t ic le  moving over the a i r f o i l  w i l l  be somewhere between these two 

extremes, depending on the value of 

i t s  position i n  the boundary layer. 

layer parameters i s  i n i t i a l l y  different from t h e i r  temporal var ia t ion,  

but the differences become l e s s  as the reversal  point i s  approached. 

Indeed, representative velocity prof i les  (Figure 18) show essent ia l ly  

the same pattern,  during the l a s t  stages of approach t o  reversal ,  whether 

the observer i s  fixed i n  space o r  i n  time. 

The actual  his tory of a f lu id  

ccy/U, 

The spacial  var ia t ion of the boundary- 

( i n  t h i s  case 0.06) and on 
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Comparison w i t h  Experimental Results 

A direct  validation of the computed resul ts ,  presented herein, cannot be 

made because of the lack of relevant experimental data. There are  

v i r tua l ly  no data available from which the movement of the flow-reversal 

point could be deduced -- o r ,  indeed from w h i c h  any useful boundary-layer 

information could be deduced. The sets  of measurements discussed below 

provide unsteady force and moment data and, t o  some extent, unsteady 

pressure data. 

t o  be properly interpreted. Comparisons a re  made between the calculated 

onset of significant flow reversal  (as defined i n  the previous section) 

and the occurrence of some event identified i n  terms of the force, moment, 

o r  pressure measurements. The event selected i s  not always the same i n  

each experiment, as w i l l  be noted l a t e r ,  and consequently there may be 

d i f f icu l ty  i n  re la t ing one se t  of measurements with another. 

it has yet  t o  be established tha t  any of the events selected i s  associated 

with the flow reversal. The intention, i n  making these comparisons, needs 

t o  be c la r i f ied ,  and it i s  two-fold. F i r s t ,  it i s  of considerable 

in t e re s t  t o  see whether the effects  of time-dependence can explain the 

well-behaved development of the turbulent boundary layer during the 

dynamic overshoot. From experiment it i s  known tha t  the boundary layer 

remains attached, o r  appears t o  remain attached, at  angles of incidence 

substant ia l ly  higher than the s t a t i c - s t a l l  angle, enabling the circula- 

t i o n  t o  continue increasing. If it is found tha t  the predicted delay 

i n  flow reversal  i s  much smaller than the observed delay i n  s t a l l ,  a t  

a given p i tch  ra te ,  then some other explanation must be found for  the 

f a i lu re  of the a i r f o i l  t o  stall .  Second, it i s  of interest  t o  see 

The comparisons between theory and experiment thus have 

Moreover, 
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whether the predicted delay of reversal  and the observed delay of s t a l l  

are  of comparable magnitude. If they are,  then the tentat ive conclusion 

may be drawn tha t  unsteady boundary-layer calculations, of the type 

performed here, have some relevance t o  the dynamic-stall problem, and 

f'urther studies can search for a possible causative l ink between the 

movement of the rear  point of flow reversal  and the onset of dynamic 

s t a l l .  

Experiments conducted by G a r e l i ~ k ' ~ ~ )  approximated a ramp-type increase 

i n  angle of attack from steady i n i t i a l  conditions. 

the a-trace of reference (23) did not. maintain a l i nea r  increase due t o  

aerodynamic and ine r t i a  loading i n  the t e s t  apparatus. The c r i te r ion  

used in  evaluating tha t  data t o  determine s t a l l  onset was t o  determine 

the angle at  which the pressure a t  10% chord (of a MCA 0012 a i r f o i l )  

stopped increasing. Although there i s  c lear ly  a re la t ion  between the 

angle established by t h i s  cr i ter ion and the angle established i n  the 

present analysis f o r  flow reversal  at 50% chord, they are  not necessar iw 

equal. This  is especially the case a t  the lower p i tch  ra tes  where, 

as was seen from the analyt ical  resu l t s ,  the  r a t e  of forward movement 

of  t h e  flow reversal  point i s  slowed r e l a t ive  t o  the  step-like motion 

at high pi tch rate .  With the poten t ia l  flow and wake flow given time 

t o  respond, large adjustments i n  the pressure dis t r ibut ions may OCCUT, 

w i t h  leading vortex formation and bubble breakdown phenomena obscuring 

possible comparison. 

In some instances 

Results for  an osc i l la t ing  a i r f o i l  w i t h  both a sinusoidal and a skewed 

wave-form are given by Carta e t  a l .  (6) Again these data measure 
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primarily lift and moment t ra jec tor ies  i n  the a-plane. Oscillatory 

data i s  f a r  from idea l  i n  evaluating separation dynamics because of 

history effects ,  f ixed osci l la tory amplitude ( i . e . ,  i n  successive 

cycles) and, perhaps most important, because the p i tch  r a t e  varies 

continuously throughout the motion of the a i r f o i l .  Consequently for  

purposes of comparison w i t h  the present theory, osc i l la tory  experimental 

data was chosen w i t h  the largest  possible amplitude of motions, o r  the 

c r i te r ion  was  used tha t  s t a l l  occur well before reaching peak osci l la tory 

amplitude. 

r a t e  i s  changing rapidly thus the data are not sui table  f o r  comparison 

with constant p i tch  r a t e  resul ts .  The angle of s t a l l  i s  determined from 

the data of reference (6) as the angle corresponding t o  sudden change i n  

lift curve slope on the ups t roke  motion. 

When the s t a l l  occurs near the maximum angle, the pi tch 

The Reynolds number of the Garelick data i s  approximately 350,000, which 

gives a s t a t i c  s t a l l  angle of 10' (experimental) for the NACA 0012 

a i r f o i l .  

chord versus 

data  of Garelick and Carta, references (23) and (6) are shown for  

comparison. The reference (6) data i s  f o r  a Reynolds number of 

1 x 10 , the  same as tha t  used for t h e  theore t ica l  resu l t s .  Two 

addi t ional  experimental points are included, taken as given i n  reduced 

form by Ericsson and Reding, but originating i n  the experimental work 

of Steiner(24) for  osc i l la t ing  a i r fo i l s .  These resu l t s  were included 

t o  give some comparison a t  intermediate pi tch ra tes ,  though the data 

a re  not very sui ted for  comparison with the present theory. 

Figure 19 shows the predicted angle f o r  flow reversal  a t  50% 

@/U , reproduced from Figure 14, and the experimental 

6 
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Figure 19 shows tha t  as the p i tch  r a t e  parameter 

comparison between experiment and theory improves, regardless of 

ca/U increases, the 

whether the experimental data r e su l t  from approximately constant p i t ch  

rate,  skewed-oscillatory, or sinusoidal t e s t  conditions. 

tends t o  confirm the observation from the  calculated r e su l t s  that the 

This behavior 

f l o w  reversal  point moves forward more rapidly w i t h  increasing p i t ch  

rate.  Thus at high p i t ch  r a t e  the s t a l l  i s  sudden and there  i s  no 

observable d is t inc t ion  between events i n  the process. It i s  noted 

that  the Garelick data,  a t  a much lower Reynolds number, r i s e  rapidly 

at  low pi tch  r a t e s  then slowly approach the theore t ica l  curve f o r  a 

Reynolds number three times as large.  

s t a l l  delay becomes insensi t ive t o  Reynolds number as unsteadiness 

These comparisons indicate t h a t  

increases. A s  a check on t h i s  observation, a short  s e r i e s  of computa- 
6 6 t ions was made a t  Reynolds numbers of .35 x 10 and 3 x 10 , using the  

present theory, w i t h  no other changes being made. The r e su l t s  are  

shown i n  Figure 19 as the dashed curves. 

only f o r  the  fill unsteady condition, that  i s ,  unsteady boundary layer  

and unsteady po ten t i a l  flow. 

The calculations were made 

This computation c lear ly  confirms the 

observation t h a t  Reynolds number i s  of decreasing importance w i t h  

increasing p i tch  r a t e .  The theory predicts  a behavior similar t o  the  

experimental values of Garelick, but w i t h  somewhat lower values Of 

overshoot. A much more rapid increase i n  delay i s  apparent f o r  the low 

pi tch r a t e s ,  w i t h  the curve slowly approaching t h a t  f o r  Reynolds number 

one million a t  higher p i t ch  ra tes .  
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CON CLUS IONS AND E3 COMMFNDATIONS 

Conclusions 

Calculations have been performed of the movement of the point of rear  

flow reversal  on an a i r f o i l  i n  uniform pitching motion. 

were done i n  two stages. F i r s t ,  the unsteady poten t ia l  flow was cal- 

culated, yielding the velocity distribution over the a i r f o i l  as a 

f'unction of chordwise s t a t ion  and t h e .  Then, the unsteady turbulent 

boundary layer was calculated using the predetermined external velocity 

distribution. Fully unsteady calculations, as so defined, were per- 

formed fo r  a range of pi tch ra tes  bracketing conditions on a helicopter 

rotor  i n  typ ica l  operations. In addition t o  these filly unsteady 

calculations, calculations were also performed i n  which e i ther  the 

poten t ia l  flow, o r  the boundary layer, was considered t o  be quasi- 

steady. The objective, here, was t o  determine the re la t ive  importance 

of time-dependence i n  the outer flow and i n  the boundary-layer, from 

the standpoint of t h e i r  e f fec ts  on flow reversal. 

The calculations 

The r e su l t s  indicate tha t  a substant ia l  delay i n  the onset of s ign i f i -  

cant flow reversal ,  due t o  unsteadiness, OCCUTS even at moderate ra tes  

of pitch.  For high ra tes  of pi tch,  the delay appears t o  reach a maximum 

corresponding t o  about 8' of incidence. 

the turbulent boundary layer can withstand the imposed retardation, 

without suffering reversal ,  a t  angles of incidence up t o  8' higher 

Thus, under dynamic conditions, 

than would be possible under s t a t i c  conditions. It is  known tha t ,  fo r  

flows of t h i s  type, boundary-layer separation -- i n  the sense of detach- 

ment of the external stream from the a i r f o i l  contour -- occurs l a t e r  
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than reversal. Hence, it may be concluded that the delay of separation 

onset i s  equivalent t o  at leas t  8' of incidence, a t  the  highest ra tes  

of pitch considered here, and may even be greater.  

It was found t h a t  unsteadiness i n  the poten t ia l  flow and unsteadiness 

i n  the boundary layer both contribute, i n  a posit ive manner, t o  the 

delay o f  flaw-reversal onset discussed above. 

roughly equal i n  magnitude although, because of the inherent non- 

l i nea r i t i e s ,  the two ef fec ts  are not precisely additive. 

The two ef fec ts  are 

The results of the present calculations shed some l igh t  on the dynamic 

s t a l l  problem. No suggestion i s  being made here tha t  dynamic s t a l l  

occurs simply as the resu l t  of the forward movement of the point of 

rear  flow reversal. The development of the leading-edge bubble, which 

has not been considered i n  th i s  work, no doubt plays a major ro le  i n  

. What has the abrupt loss of c i rculat ion which takes place near CL 

been shown i s  t h a t  the e f fec ts  of the-dependence permit the turbulent 

boundary layer t o  remain i n  a non-reversed (and non-separated) 

max 

condition during the so-called dynamic overshoot. Had it been 

demonstrated tha t  reversal ,  i n  the turbulent boundary layer,  could not 

be avoided a t  these angles of incidence and p i tch  r a t e s ,  then Some 

other hypothesis would have been needed t o  explain how the lift 

coefficient continues t o  r i s e ,  beyond the point of s t a t i c  s t a l l .  This 

hypothesis would have been required i n  addition t o  an adequate des- 

cription of the  mechanism of dynamic s ta l l  i t s e l f ;  such a description 

has not yet been advanced. 



The poss ib i l i ty  ex is t s ,  of course, that  the forward movement of the 

rear  reversal  point contributes, i n  some manner, t o  the collapse of the 

circulation around the a i r f o i l .  

movement of the reversal  point tr iggers the events which actually 

cause the collapse of the  circulation, receives considerable support 

from the comparisons between theory and experiment presented herein. 

It i s  shown tha t  there i s  a surprising degree of correlation between 

calculations of  the onset of significant flow-reversal, and measurements 

of the onset of dynamic s t a l l .  

whether the correlation is  fortuitous,  o r  whether some causative l ink  

does indeed ex is t  between rear  flow reversal and dynamic s t a l l .  

The tentative suggestion, tha t  t h i s  

F u r t h e r  work w i l l  address the question of 

Re commendat ions 

’ 1  The present work has drawn at tent ion t o  the urgency of investigating a 

number of re la ted topics i n  order t o  f’u1I.y exploit ,  apply, and extend 

the technology developed herein. 

1. 

the turbulent boundary layer. 

a fill treatment would involve the study of unsteady t rans i t ion  near a 

high suction peak, possibly associated w i t h  a separation bubble (o r  more 

precisely a bubble of reversed flow); t h i s  i s  a formidable problem. 

useful, but more limited, approach would be t o  perform a sens i t iv i ty  

analysis t o  determine the precise effect  of the uncertainty i n  initiP.1 

conditions: w i t h  regard t o  the thickness and prof i le  of the turbulent 

boundary layer, and also t o  the location of t ransi t ion.  Herein, 

)/ ’ I 

Attention should be given t o  the question of i n i t i a l  conditions fo r  

A s  noted i n  the body of the Report, 
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t ransi t ion was assumed t o  occur a t  the suction peak, but it may occur 

shortly thereafter.  It would be helpf'ul t o  know, i n  de t a i l ,  what e f fec t  

such changes would have on the predicted onset of flow reversal. 

2. 

Reynolds-number sens i t iv i ty .  

number e f fec ts  was made i n  the present work, and a more extensive study 

i s  called fo r  t o  properly exploit the capabili ty provided by t h i s  work. 

The question of i n i t i a l  conditions i s  t i e d  closely t o  tha t  of 

Only a cursory examination of Reynolds 

3. 

changing the incidence time history of the a i r f o i l .  

i s  an urgent need t o  compare the present resu l t s  with calculations f o r  

a sinusoidal incidence pat tern,  so, as t o  approach more closely condi- 

t ions on a helicopter i n  f l i gh t .  

A study i s  needed t o  determine the effect  on flow-reversal onset of 

In par t icular ,  there 

4. Calcdations need t o  be performed for  different  a i r f o i l  sections,  

particularly t o  explore the flow-reversal behavior of some of the advanced 

a i r fo i l s  being considered fo r  rotor  applications. 

5. 

forward movement of the flow reversal  point a t  high (but s t i l l  

r ea l i s t i c )  pi tch rates .  

undesirable character is t ic  with possible load and safety implications 

The significance of discontinuous movement should be considered, and 

the possibi l i ty  of avoiding such behavior, by careful  design of the  

a i r f o i l  pressure dis t r ibut ion,  should be investigated. 

t i o n  could profitably be coupled w i t h  t ha t  i n  4 ,  above. 

The present resu l t s  indicated the  poss ib i l i t y  of discontinuous 

Behavior of t h i s  type could represent an 

This investiga- 
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6. 

act ion between the boundary layer  and the poten t ia l  f l o w .  

the  va l id i ty  of the r e su l t s  i s  i n  question once reversa l  moves sub- 

s t a n t i a l l y  forward from the  t r a i l i n g  edge. 

remove th i s  l imitat ion,  and develop methods fo r  including the  e f fec ts  of 

d i s tor t ion  of the external  flow by the  boundary-layer displacement 

thickness. 

largely been wuccessf 'ul .  

has been the lack of adequate models o f  the boundary layer downstream 

of the point of flow reversal. 

USAAMJXDL, Ames Directorate under Contract W2-7724, has provided the  

capabili ty of extending the boundary-layer calculation through the 

c ruc ia l  region between reversal  and flow separation. 

provides an e s sen t i a l  t o o l  for  inclusion i n  any method of t rea t ing  the 

strong interact ion problem on a physically r e a l i s t i c  basis .  

The present study did not include the e f f ec t s  of strong inter-  

Accordingly, 

There is  an urgent need t o  

Some attempts have already been made t o  do t h i s ,  but they have 

One of the main weaknesses of these attempts 

Work currently being conducted f o r  

This new capabili ty 
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Figure 14. 
Increase i n  Incidence f o r  Flow Reversal a t  .5c Due t o  P i t c h  Kate 
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F igure  15. Wall  Shear S t r e s s  Versus Chordwise 
P o s i t i o n  a t  a = 17 .5  and c&/Uw = .06 
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F igure  16. Displacement Thickness Versus Chordwise 

P o s i t i o n  a t  a = 17.5 and c&/U = .06 

55 



.o 

8 ;k 

.o 

.o 

L 
0 

.04 

6 9; 

03 

.02 

.Ol 

0 

5. 

.004 

T W  

.002 

0 
10. 20. 

ao 

(b) -rw and 6;: Versus x /c  a t  a = 17.5' 

. 2  .4 .6 .8 1 

,008 

,006 

T W  

.004 

,002 

0 
.o 

F igure 17. Wall Shear S t ress  and Displacement 

Response for t h e  F u l l y  Unsteady, ch/UW = .06 
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' F i g u r e  18. Approach t o  Flow Reversal :  

I ,  velocity P r o f i l e s  a t  Se lec ted  Chordwise S t a t i o n s  and Inc idences  
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F i g u r e  19. Comparison w i t h  Exper iment 

NASA-Langley, 1974 CR-2462 


