The charged particle stopping power in a highly ionized and weakly to
moderately coupled plasma has been calculated to leading and next-to-leading
order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas
behind this calculation, we use a Fokker-Planck equation derived by BPS to
compute the electron-ion energy partitioning of a charged particle traversing a
plasma. The motivation for this application is ignition for inertial
confinement fusion -- more energy delivered to the ions means a better chance
of ignition, and conversely. It is therefore important to calculate the
fractional energy loss to electrons and ions as accurately as possible, as this
could have implications for the Laser Megajoule (LMJ) facility in France and
the National Ignition Facility (NIF) in the United States. The traditional
method by which one calculates the electron-ion energy splitting of a charged
particle traversing a plasma involves integrating the stopping power dE/dx.
However, as the charged particle slows down and becomes thermalized into the
background plasma, this method of calculating the electron-ion energy splitting
breaks down. As a result, the method suffers a systematic error of order T/E0,
where T is the plasma temperature and E0 is the initial energy of the charged
particle. In the case of DT fusion, for example, this can lead to uncertainties
as high as 10% or so. The formalism presented here is designed to account for
the thermalization process, and in contrast, it provides results that are
near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical
Society meeting on plasma physic