66 research outputs found

    Impact of pulse oximetry screening to detect congenital heart defects: 5 years' experience in a UK regional neonatal unit.

    Get PDF
    Pulse oximetry screening (POS) has been shown to be an effective, non-invasive investigation that can detect up to 50-70% of previously undiagnosed congenital heart defects (CHDs). The aims of this study were to assess the accuracy of POS in detection of CHDs and its impact on clinical practice. All eligible newborn infants born between 1 Jan 2015 and 31 Dec 2019 in a busy regional neonatal unit were included in this prospective observational study. A positive POS was classified as two separate measurements of oxygen saturation  2% between pre- and post-ductal circulations. Overall, 23,614 infants had documented POS results. One hundred eighty nine (0.8%) infants had a true positive result: 6 had critical CHDs, 9 serious or significant CHDs, and a further 156/189 (83%) infants had significant non-cardiac conditions. Forty-three infants who had a normal POS were later diagnosed with the following categories of CHDs post-hospital discharge: 1 critical, 15 serious, 20 significant and 7 non-significant CHDs. POS sensitivity for detection of critical CHD was 85.7%, whereas sensitivity was only 33% for detection of major CHDs (critical and serious) needing surgery during infancy; specificity was 99.3%.Conclusion: Pulse oximetry screening showed moderate to high sensitivity in detection of undiagnosed critical CHDs; however, it failed to detect two-third of major CHDs. Our study further emphasises the significance of adopting routine POS to detect critical CHDs in the clinical practice. However, it also highlights the need to develop new, innovative methods, such as perfusion index, to detect other major CHDs missed by current screening tools. What is Known: • Pulse oximetry screening is cost effective, acceptable, easy to perform and has moderate sensitivity and high specificity in detection of critical congenital heart defects. • Pulse oximetry screening has been implemented many countries including USA for detection of critical congenital heart defects, but it is not currently recommended by the UK National Screening Committee. What is New: • To our knowledge, this is the first study describing postnatal detection and presentation of all the infants with congenital heart defects over a period of 5 years, including those not detected on the pulse oximetry screening, on the clinical practice. • It emphasises that further research required to detect critical congenital heart defects and other major CHDs which can be missed on the screening tools currently employed in clinical practice

    Current Controversy on Platelets and Patent Ductus Arteriosus Closure in Preterm Infants.

    Get PDF
    Platelets are critically involved in murine patent ductus arteriosus (PDA) closure. To date, the clinical significance of these findings in human preterm infants with PDA is still controversial. We discuss the available study data on the role of platelets for PDA closure in preterm infants: Several mostly retrospective studies have yielded conflicting results on whether thrombocytopenia contributes to failed spontaneous ductal closure. The same applies to investigations on the role of thrombocytopenia as a risk factor for unsuccessful ductus arteriosus closure by pharmacological treatment with cyclooxygenase inhibitors. Nonetheless, recent meta-analyses have concluded that thrombocytopenia constitutes an independent risk factor for both failed spontaneous and pharmacological PDA closure in preterm infants. However, the available investigations differ in regard to patient characteristics, diagnostic strategies, and treatment protocols. Several studies suggest that impaired platelet function rather than platelet number is critically involved in failure of ductus arteriosus closure in the preterm infant. A recent randomized-controlled trial on platelet transfusions in preterm infants with PDA failed to show any benefit for liberal vs. restrictive transfusion thresholds on PDA closure rates. Importantly, liberal transfusions were associated with an increased rate of intraventricular hemorrhage, and thus should be avoided. In conclusion, the available evidence suggests that thrombocytopenia and platelet dysfunction contribute to failure of spontaneous and pharmacological PDA closure in preterm infants. However, these platelet effects on PDA seem to be of only moderate clinical significance. Furthermore, platelet transfusions in thrombocytopenic preterm infants in order to facilitate PDA closure appear to cause more harm than good

    Acute Cardiovascular Manifestations in 286 Children With Multisystem Inflammatory Syndrome Associated With COVID-19 Infection in Europe

    Get PDF
    [Background] The aim of the study was to document cardiovascular clinical findings, cardiac imaging, and laboratory markers in children presenting with the novel multisystem inflammatory syndrome associated with coronavirus disease 2019 (COVID-19) infection.[Methods] This real-time internet-based survey has been endorsed by the Association for European Paediatric and Congenital Cardiologists Working Groups for Cardiac Imaging and Cardiovascular Intensive Care. Children 0 to 18 years of age admitted to a hospital between February 1 and June 6, 2020, with a diagnosis of an inflammatory syndrome and acute cardiovascular complications were included.[Results] A total of 286 children from 55 centers in 17 European countries were included. The median age was 8.4 years (interquartile range, 3.8–12.4 years) and 67% were boys. The most common cardiovascular complications were shock, cardiac arrhythmias, pericardial effusion, and coronary artery dilatation. Reduced left ventricular ejection fraction was present in over half of the patients, and a vast majority of children had raised cardiac troponin when checked. The biochemical markers of inflammation were raised in most patients on admission: elevated C-reactive protein, serum ferritin, procalcitonin, N-terminal pro B-type natriuretic peptide, interleukin-6 level, and D-dimers. There was a statistically significant correlation between degree of elevation in cardiac and biochemical parameters and the need for intensive care support (P<0.05). Polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 was positive in 33.6%, whereas immunoglobulin M and immunoglobulin G antibodies were positive in 15.7% cases and immunoglobulin G in 43.6% cases, respectively, when checked. One child in the study cohort died.[Conclusions] Cardiac involvement is common in children with multisystem inflammatory syndrome associated with the Covid-19 pandemic. The majority of children have significantly raised levels of N-terminal pro B-type natriuretic peptide, ferritin, D-dimers, and cardiac troponin in addition to high C-reactive protein and procalcitonin levels. In comparison with adults with COVID-19, mortality in children with multisystem inflammatory syndrome associated with COVID-19 is uncommon despite multisystem involvement, very elevated inflammatory markers, and the need for intensive care support.This research was partially supported by the Institute of Health Carlos III, Proyectos de Investigacion en Salud (ISCIII PI17/01409) financed by European Development Regional Fund ‘A way to achieve Europe’, Operative program Intelligent Growth 2014-2020.Peer reviewe

    S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S110 is a novel dinucleoside analog that could have advantages over existing DNA methyltransferase (DNMT) inhibitors such as decitabine. A potential therapeutic role for S110 is to increase fetal hemoglobin (HbF) levels to treat β-hemoglobinopathies. In these experiments the effect of S110 on HbF levels in baboons and its ability to reduce DNA methylation of the γ-globin gene promoter in vivo were evaluated.</p> <p>Methods</p> <p>The effect of S110 on HbF and γ-globin promoter DNA methylation was examined in cultured human erythroid progenitors and in vivo in the baboon pre-clinical model. S110 pharmacokinetics was also examined in the baboon model.</p> <p>Results</p> <p>S110 increased HbF and reduced DNA methylation of the γ-globin promoter in human erythroid progenitors and in baboons when administered subcutaneously. Pharmacokinetic analysis was consistent with rapid conversion of S110 into the deoxycytosine analog decitabine that binds and depletes DNA.</p> <p>Conclusion</p> <p>S110 is rapidly converted into decitabine, hypomethylates DNA, and induces HbF in cultured human erythroid progenitors and the baboon pre-clinical model.</p
    • …
    corecore