14 research outputs found

    COVID-19 lockdown induced changes in NO2 levels across India observed by multi-satellite and surface observations

    Get PDF
    © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.We have estimated the spatial changes in NO 2levels over different regions of India during the COVID-19 lockdown (25 March-3 May 2020) using the satellite-based tropospheric column NO 2observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), as well as surface NO 2concentrations obtained from the Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO 2levels was observed across India during the lockdown compared to the same period during previous business-as-usual years, except for some regions that were influenced by anomalous fires in 2020. The reduction (negative change) over the urban agglomerations was substantial (~20 %-40 %) and directly proportional to the urban size and population density. Rural regions across India also experienced lower NO 2values by ~15 %-25 %. Localised enhancements in NO 2associated with isolated emission increase scattered across India were also detected. Observed percentage changes in satellite and surface observations were consistent across most regions and cities, but the surface observations were subject to larger variability depending on their proximity to the local emission sources. Observations also indicate NO 2enhancements of up to~25%during the lockdown associated with fire emissions over the north-east of India and some parts of the central regions. In addition, the cities located near the large fire emission sources show much smaller NO 2reduction than other urban areas as the decrease at the surface was masked by enhancement in NO 2due to the transport of the fire emissions.Peer reviewedFinal Published versio

    Not Available

    No full text
    Not Availableprocess for development of guava fruit barNot Availabl

    Not Available

    No full text
    Not AvailableProcess for development/constitute Wheat based daliyaNot Availabl

    Not Available

    No full text
    Not AvailableEvaporative cold room structure for safe storage of fruits and vegetableNot Availabl

    Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study

    No full text
    Near real-time monitoring of major air pollutants, i.e., particulate matter (PM10, PM2.5, PM1), trace gases (O3, CO, NO, NO2, NOx, NH3, CO2, SO2) and Volatile Organic Compounds (VOCs: benzene, ethylbenzene, m-, p-xylene, o-xylene and toluene) along with climatological parameters was done in eight-cities field campaigns during the rabi (wheat) crop residue burning period in the northwest of Indo-Gangetic Plain (IGP) region. The phase-wise monitoring was done at eight locations representing rural, semi-urban and urban backgrounds. During the whole campaign, the semi-urban site (Sirsa) observed the highest average concentration of PM10 (226 ± 111 μg m−3) and PM2.5 (91 ± 67 μg m−3). The urban site (Chandigarh) reported the minimum concentrations of all the three size fractions of particulate matter with PM10 as 89 ± 54 μg m−3, PM2.5 as 42 ± 22 μg m−3 and PM1 as 20 ± 13 μg m−3 where the monitoring was done in the early phase of the campaign. The highest VOC concentration was recorded at the semi-urban (Sirsa) site, whereas the lowest was at a rural location (Fatehgarh Sahib). NH3 concentration was observed highest in rural sites (31.7 ± 29.8 ppbv), which can be due to the application of fertilizers in agricultural activities. Visible Infrared Imaging Radiometer Suite (VIIRS) based fire and thermal anomalies, along with HYSPLIT back trajectory analysis, show that major air masses over monitoring sites (22 %–70 %) were from the rabi crop residue burning regions. The characteristic ratios and Principal component analysis (PCA) results show that diverse sources, i.e., emissions from crop residue burning, solid biomass fuels, vehicles and industries, majorly degrade the regional air quality. This multi-city study observed that semi-urban regions have the most compromised air quality during the rabi crop residue burning and need attention to address the air quality issues in the IGP region

    COVID-19 Pandemic: What Can We Learn for Better Air Quality and Human Health?

    No full text
    The COVID-19 lockdown resulted in improved air quality in many cities across the world. With the objective of what could be the new learning from the COVID-19 pandemic and subsequent lockdowns for better air quality and human health, a critical synthesis of the available evidence concerning air pollution reduction, the population at risk and natural versus anthropogenic emissions was conducted. Can the new societal norms adopted during pandemics, such as the use of face cover, awareness regarding respiratory hand hygiene, and physical distancing, help in reducing disease burden in the future? The use of masks will be more socially acceptable during the high air pollution episodes in lower and middle-income countries, which could help to reduce air pollution exposure. Although post-pandemic, some air pollution reduction strategies may be affected, such as car-pooling and the use of mass transit systems for commuting to avoid exposure to airborne infections like coronavirus. However, promoting non-motorized modes of transportation such as cycling and walking within cities as currently being enabled in Europe and other countries could overshadow such losses. This demand focus on increasing walkability in a town for all ages and populations, including for a differently-abled community. The study highlighted that for better health and sustainability there. is also a need to promote other measures such as work-from-home, technological infrastructure, the extension of smart cities, and the use of information technology

    Assessment of noise pollution in and around a sensitive zone in North India and its non-auditory impacts

    Get PDF
    AbstractNoise pollution in hospitals is recognized as a serious health hazard. Considering this, the current study aimed to map the noise pollution levels and to explore the self reported non-auditory effects of noise in a tertiary medical institute. The study was conducted in an 1800-bedded tertiary hospital where 27 sites (outdoor, indoor, road side and residential areas) were monitored for exposure to noise using Sound Level Meter for 24h. A detailed noise survey was also conducted around the sampling sites using a structured questionnaire to understand the opinion of the public regarding the impact of noise on their daily lives. The equivalent sound pressure level (Leq) was found higher than the permissible limits at all the sites both during daytime and night. The maximum equivalent sound pressure level (Lmax) during the day was observed higher (>80dB) at the emergency and around the main entrance of the hospital campus. Almost all the respondents (97%) regarded traffic as the major source of noise. About three-fourths (74%) reported irritation with loud noise whereas 40% of respondents reported headache due to noise. Less than one-third of respondents (29%) reported loss of sleep due to noise and 8% reported hypertension, which could be related to the disturbance caused due to noise. Noise levels in and around the hospital was well above the permissible standards. The recent Global Burden of Disease highlights the increasing risk of non communicable diseases. The non-auditory effects studied in the current work add to the risk factors associated with non communicable diseases. Hence, there is need to address the issue of noise pollution and associated health risks specially for vulnerable population
    corecore