76 research outputs found

    Indirect determination of OH

    Get PDF
    Efforts are under way to develop indirect OH measurement techniques by utilizing tailor made reactive OH tracers to be employed in estimating OH abundance within air masses over a 100 to 1,000 km transport distance. By simultaneously releasing controlled quantities of reactive and inert tracers, both dispersion and OH abundance can be determined. When fully developed, the method will be used at all expected levels of atmospheric OH concentrations. A number of candidate reactive OH tracers were selected after a careful screening process. Laboratory work is now under way to affirm the applicability of the selected chemicals to real world conditions

    A Historical Perspective on Primary and Possible Secondary Sources of Atmospheric Carbon Tetrachloride

    Get PDF
    Atmospheric sources of Carbon Tetrachloride (CTC) have been controversial since its detection in the early 1970. Initial proposals were that it is globally uniformly distributed and its lack of current emissions and inferred lifetime indicated that it was likely of natural origin. Historical analysis of CTC use and emissions showed that atmospheric CTC was long-lived and mainly of man-made origin although small natural sources and sinks (e. g. oceans) could not be ruled out. This deduction was hard because a majority of emissions had occurred in early part of the 20th century when CTC was commonly used as a fumigant, a solvent, and a raw material for the manufacture of many chemicals. In the 1940's adverse health effects of exposure to CTC became evident and its emissions were greatly curtailed and substituted with C2Cl4 which was thought to be much safer. There were smog chamber studies that showed that C2Cl4, a widely used solvent during the late 20th century, could produce CTC with up to a 7% yield. Subsequently it was discovered that this chemistry probably required Cl atoms and since Cl atoms were not abundant in the atmosphere actual yields based on OH oxidation were probably closer to 0.1%. CTC was subsequently banned by the Montreal Protocol to prevent stratospheric ozone depletion and its preferred substitute C2Cl4 was also banned by EPA for reasons of potential carcinogenicity and toxicity. CTC since has been measured in many airborne NASA campaigns in which plumes have been sampled from a variety of regions which may still be emitting CTC. I will briefly discuss this historical perspective of CTC and show some recent data that may shed light on its current sources or lack there off

    Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    Get PDF
    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above

    Chemical NOx budget in the upper troposphere over the tropical South Pacific

    Get PDF
    The chemical NOx budget in the upper troposphere over the tropical South Pacific is analyzed using aircraft measurements made at 6-12 km altitude in September 1996 during the Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM) Tropics A campaign. Chemical loss and production rates of NOx along the aircraft flight tracks are calculated with a photochemical model constrained by observations. Calculations using a standard chemical mechanism show a large missing source for NOx; chemical loss exceeds chemical production by a factor of 2.4 on average. Similar or greater NOx budget imbalances have been reported in analyses of data from previous field studies. Ammonium aerosol concentrations in PEM-Tropics A generally exceeded sulfate on a charge equivalent basis, and relative humidities were low (median 25% relative to ice). This implies that the aerosol could be dry in which case N2O5 hydrolysis would be suppressed as a sink for NOx. Suppression of N2O5 hydrolysis and adoption of new measurements of the reaction rate constants for NO2 + OH + M and HNO3 + OH reduces the median chemical imbalance in the NOx budget for PEM-Tropics A from 2.4 to 1.9. The remaining imbalance cannot be easily explained from known chemistry or long-range transport of primary NOx and may imply a major gap in our understanding of the chemical cycling of NOx in the free troposphere. Copyright 2000 by the American Geophysical Union

    Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Get PDF
    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004), SENEX (June–July 2013), and SEAC4RS (August–September 2013) and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (∼ 42–45%), followed by NOx (31%), total peroxy nitrates (ΣPNs; 14%), and total alkyl nitrates (ΣANs; 9–12%) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOxemissions will lead to a continued decline in surface ozone and less frequent high-ozone events
    • …
    corecore