19,138 research outputs found

    Assessing technical candidates on the social web

    Get PDF
    This is the pre-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThe Social Web provides comprehensive and publicly available information about software developers: they can be identified as contributors to open source projects, as experts at maintaining weak ties on social network sites, or as active participants to knowledge sharing sites. These signals, when aggregated and summarized, could be used to define individual profiles of potential candidates: job seekers, even if lacking a formal degree or changing their career path, could be qualitatively evaluated by potential employers through their online contributions. At the same time, developers are aware of the Web’s public nature and the possible uses of published information when they determine what to share with the world. Some might even try to manipulate public signals of technical qualifications, soft skills, and reputation in their favor. Assessing candidates on the Web for technical positions presents challenges to recruiters and traditional selection procedures; the most serious being the interpretation of the provided signals. Through an in-depth discussion, we propose guidelines for software engineers and recruiters to help them interpret the value and trouble with the signals and metrics they use to assess a candidate’s characteristics and skills

    A crystal base for the genetic code

    Get PDF
    The quantum enveloping algebra U_q(sl(2) \oplus sl(2)) in the limit q \to 0 is proposed as a symmetry algebra for the genetic code. In this approach the triplets of nucleotids or codons in the DNA chain are classified in crystal bases, tensor product of U_{q \to 0}(sl(2) \oplus sl(2)) representations. Such a construction might be compared to the baryon classification from quark building blocks in elementary particles physics, one of the main differences standing in the property of a crystal base to provide a natural order in the state constituents, this order being crucial in the codon. Then an operator ensuring the correspondence codon/amino-acid can be constructed out of the above algebra. It will be called the reading operator, and be such that two codons relative to the same (resp. different) amino-acid(s) acquire the same (resp. different) eigenvalue(s).Comment: LaTeX-2e document, package amsfonts, 11 page

    Analytic approximations to the phase diagram of the Jaynes-Cummings-Hubbard model with application to ion chains

    Full text link
    We discuss analytic approximations to the ground state phase diagram of the homogeneous Jaynes-Cummings-Hubbard (JCH) Hamiltonian with general short-range hopping. The JCH model describes e.g. radial phonon excitations of a linear chain of ions coupled to an external laser field tuned to the red motional sideband with Coulomb mediated hopping or an array of high-QQ coupled cavities containing a two-level atom and photons. Specifically we consider the cases of a linear array of coupled cavities and a linear ion chain. We derive approximate analytic expressions for the boundaries between Mott-insulating and superfluid phases and give explicit expressions for the critical value of the hopping amplitude within the different approximation schemes. In the case of an array of cavities, which is represented by the standard JCH model we compare both approximations to numerical data from density-matrix renormalization group (DMRG) calculations.Comment: 9 pages, 5 figures, extended and corrected second versio

    A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms

    Get PDF
    [1] We evaluate the performance of recent empirical magnetic field models (Tsyganenko, 1996, 2002a, 2002b; Tsyganenko and Sitnov, 2005, hereafter referred to as T96, T02 and TS05, respectively) during magnetic storm times including both pre- and post-storm intervals. The model outputs are compared with GOES observations of the magnetic field at geosynchronous orbit. In the case of a major magnetic storm, the T96 and T02 models predict anomalously strong negative Bz at geostationary orbit on the nightside due to input values exceeding the model limits, whereas a comprehensive magnetic field data survey using GOES does not support that prediction. On the basis of additional comparisons using 52 storm events, we discuss the strengths and limitations of each model. Furthermore, we quantify the performance of individual models at predicting geostationary magnetic fields as a function of local time, Dst, and storm phase. Compared to the earlier models (T96 and T02), the most recent storm-time model (TS05) has the best overall performance across the entire range of local times, storm levels, and storm phases at geostationary orbit. The field residuals between TS05 and GOES are small (≀3 nT) compared to the intrinsic short time-scale magnetic variability of the geostationary environment even during non-storm conditions (∌24 nT). Finally, we demonstrate how field model errors may affect radiation belt studies when estimating electron phase space density

    Topological Speed Limits to Network Synchronization

    Full text link
    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and stays finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.Comment: 5 pages, 3 figure

    Charmless Three-body Decays of B Mesons

    Full text link
    Charmless 3-body decays of B mesons are studied in the framework of the factorization approach. The nonresonant contributions arising from B→P1P2B\to P_1P_2 transitions are evaluated using heavy meson chiral perturbation theory (HMChPT). The momentum dependence of nonresonant amplitudes is assumed to be in the exponential form e^{-\alpha_{NR}} p_B\cdot(p_i+p_j)} so that the HMChPT results are recovered in the soft meson limit pi,pj→0p_i, p_j\to 0. In addition, we have identified another large source of the nonresonant signal in the matrix elements of scalar densities, e.g. , which can be constrained from the decay Bˉ0→KSKSKS\bar B^0\to K_SK_SK_S or B−→K−KSKSB^-\to K^-K_SK_S. The intermediate vector meson contributions to 3-body decays are identified through the vector current, while the scalar meson resonances are mainly associated with the scalar density. Their effects are described in terms of the Breit-Wigner formalism. Our main results are: (i) All KKK modes are dominated by the nonresonant background. The predicted branching ratios of K+K−KS(L)K^+K^-K_{S(L)}, K+K−K−K^+K^-K^- and K−KSKSK^-K_SK_S modes are consistent with the data within errors. (ii) Although the penguin-dominated B0→K+K−KSB^0\to K^+K^-K_{S} decay is subject to a potentially significant tree pollution, its effective sin⁥2ÎČ\sin 2\beta is very similar to that of the KSKSKSK_SK_SK_S mode. However, direct CP asymmetry of the former, being of order -4%, is more prominent than the latter. (iii) For B→KππB\to K\pi\pi decays, we found sizable nonresonant contributions in K−π+π−K^-\pi^+\pi^- and Kˉ0π+π−\bar K^0\pi^+\pi^- modes, in agreement with the Belle measurements but larger than the BaBar result.Comment: 39 pages, 2 figures, version to appear in PR

    Solar pond power plant feasibility study for Davis, California

    Get PDF
    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept

    Structure and Innervation of the Equine Supraspinous and Interspinous Ligaments

    Get PDF
    Pain related to the osseous thoracolumbar spine is common in the equine athlete, with minimal information available regarding soft tissue pathology. The aims of this study were to describe the anatomy of the equine SSL and ISL (supraspinous and interspinous ligaments) in detail and to assess the innervation of the ligaments and their myofascial attachments including the thoracolumbar fascia. Ten equine thoracolumbar spines (T15‐L1) were dissected to define structure and anatomy of the SSL , ISL and adjacent myofascial attachments. Morphological evaluation included histology, electron microscopy and immunohistochemistry (S100 and Substance P) of the SSL , ISL , adjacent fascial attachments, connective tissue and musculature. The anatomical study demonstrated that the SSL and ISL tissues merge with the adjacent myofascia. The ISL has a crossing fibre arrangement consisting of four ligamentous layers with adipose tissue axially. A high proportion of single nerve fibres were detected in the SSL (mean = 2.08 fibres/mm2) and ISL (mean = 0.75 fibres/mm2), with the larger nerves located between the ligamentous and muscular tissue. The oblique crossing arrangement of the fibres of the ISL likely functions to resist distractive and rotational forces, therefore stabilizing the equine thoracolumbar spine. The dense sensory innervation within the SSL and ISL could explain the severe pain experienced by some horses with impinging dorsal spinous processes. Documentation of the nervous supply of the soft tissues associated with the dorsal spinous processes is a key step towards improving our understanding of equine back pain
    • 

    corecore