2,888 research outputs found

    Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

    Get PDF
    A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s−1. Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied

    The Physics of Bodily Tides in Terrestrial Planets, and the Appropriate Scales of Dynamical Evolution

    Full text link
    Any model of tides is based on a specific hypothesis of how lagging depends on the tidal-flexure frequency. For example, Gerstenkorn (1955), MacDonald (1964), and Kaula (1964) assumed constancy of the geometric lag angle, while Singer (1968) and Mignard (1979, 1980) asserted constancy of the time lag. Thus, each of these two models was based on a certain law of scaling of the geometric lag. The actual dependence of the geometric lag on the frequency is more complicated and is determined by the rheology of the planet. Besides, each particular functional form of this dependence will unambiguously fix the appropriate form of the frequency dependence of the tidal quality factor, Q. Since at present we know the shape of the dependence of Q upon the frequency, we can reverse our line of reasoning and single out the appropriate actual frequency-dependence of the angular lag. This dependence turns out to be different from those employed hitherto, and it entails considerable alterations in the time scales of the tide-generated dynamical evolution. Phobos' fall on Mars is an example we consider.Comment: arXiv admin note: substantial text overlap with arXiv:astro-ph/060552

    Diversity and Evolution of Myxobacterial Type IV Pilus Systems

    Get PDF
    Type IV pili (T4P) are surface-exposed protein fibers that play key roles in the bacterial life cycle via surface attachment/adhesion, biofilm formation, motility, and development. The order Myxococcales (myxobacteria) are members of the class Deltaproteobacteria and known for their large genome size and complex social behaviors, including gliding motility, fruiting body formation, biofilm production, and prey hunting. Myxococcus xanthus, the best-characterized member of the order, relies on the appropriate expression of 17 type IVa (T4aP) genes organized in a single cluster plus additional genes (distributed throughout the genome) for social motility and development. Here, we compared T4aP genes organization within the myxobacteria to understand their evolutionary origins and diversity. We found that T4aP genes are organized as large clusters in suborder Cystobacterineae, whereas in other two suborders Sorangiineae and Nannocystineae, these genes are dispersed throughout the genome. Based on the genomic organization, the phylogeny of conserved proteins, and synteny studies among 28 myxobacterial and 66 Proteobacterial genomes, we propose an evolutionary model for the origin of myxobacterial T4aP genes independently from other orders in class Deltaproteobacteria. Considering a major role for T4P, this study further proposes the origins and evolution of social motility in myxobacteria and provides a foundation for understanding how complex-behavioral traits, such as gliding motility, multicellular development, etc., might have evolved in this diverse group of complex organisms

    How China’s Options Will Determine GlobalWarming

    Get PDF
    Carbon dioxide emissions, global average temperature, atmospheric CO2 concentrations, and surface ocean mixed layer acidity are extrapolated using analyses calibrated against extensive time series data for nine global regions. Extrapolation of historical trends without policy-driven limitations has China responsible for about half of global CO2 emissions by the middle of the twenty-first century. Results are presented for three possible actions taken by China to limit global average temperature increase to levels it considers to be to its advantage: (1) Help develop low-carbon energy technology broadly competitive with unbridled carbon emissions from burning fossil fuels; (2) Entice other countries to join in limiting use of what would otherwise be economically competitive fossil fuels; (3) Apply geo-engineering techniques such as stratospheric sulfur injection to limit global average temperature increase, without a major global reduction in carbon emissions. Taking into account China’s expected influence and approach to limiting the impact of anthropogenic climate change allows for a narrower range of possible outcomes than for a set of scenarios that are not constrained by analysis of likely policy-driven limitations. While China could hold back on implementing geoengineering given a remarkable amount of international cooperation on limiting fossil carbon burning, an outcome where geoengineering is used to delay the perceived need to limit the atmospheric CO2 concentration may be difficult to avoid
    • 

    corecore