2,137 research outputs found
A note on the realignment criterion
For a quantum state in a bipartite system represented as a density matrix,
researchers used the realignment matrix and functions on its singular values to
study the separability of the quantum state. We obtain bounds for elementary
symmetric functions of singular values of realignment matrices. This answers
some open problems proposed by Lupo, Aniello, and Scardicchio. As a
consequence, we show that the proposed scheme by these authors for testing
separability would not work if the two subsystems of the bipartite system have
the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and
Theoretica
Laser ablation loading of a radiofrequency ion trap
The production of ions via laser ablation for the loading of radiofrequency
(RF) ion traps is investigated using a nitrogen laser with a maximum pulse
energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight
mass spectrometer is used to measure the ion yield and the distribution of the
charge states. Singly charged ions of elements that are presently considered
for the use in optical clocks or quantum logic applications could be produced
from metallic samples at a rate of the order of magnitude 10^5 ions per pulse.
A linear Paul trap was loaded with Th+ ions produced by laser ablation. An
overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained.
For ions injected individually, a dependence of the capture probability on the
phase of the RF field has been predicted. In the experiment this was not
observed, presumably because of collective effects within the ablation plume.Comment: submitted to Appl. Phys. B., special issue on ion trappin
Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS
We present Hubble Space Telescope optical and near-ultraviolet transmission
spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space
Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover
the range 2900-5700 Ang and reach per-exposure signal-to-noise levels greater
than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained
during two transit events to determine the wavelength dependance of the
planetary radius and measure the exoplanet's atmospheric transmission spectrum
for the first time over this wavelength range. Our measurements, in conjunction
with existing HST spectra, now provide a broadband transmission spectrum
covering the full optical regime. The STIS data also shows unambiguous evidence
of a large occulted stellar spot during one of our transit events, which we use
to place constraints on the characteristics of the K dwarf's stellar spots,
estimating spot temperatures around Teff~4250 K. With contemporaneous
ground-based photometric monitoring of the stellar variability, we also measure
the correlation between the stellar activity level and transit-measured
planet-to-star radius contrast, which is in good agreement with predictions. We
find a planetary transmission spectrum in good agreement with that of Rayleigh
scattering from a high-altitude atmospheric haze as previously found from HST
ACS camera. The high-altitude haze is now found to cover the entire optical
regime and is well characterised by Rayleigh scattering. These findings suggest
that haze may be a globally dominant atmospheric feature of the planet which
would result in a high optical albedo at shorter optical wavelengths.Comment: 14 pages, 14 figures, 4 tables, accepted to MNRAS, revised version
has minor change
Two-Spinon and Orbital Excitations of the Spin-Peierls System TiOCl
We combine high-resolution resonant inelastic x-ray scattering with cluster
calculations utilizing a recently derived effective magnetic scattering
operator to analyze the polarization, excitation energy, and momentum dependent
excitation spectrum of the low-dimensional quantum magnet TiOCl in the range
expected for orbital and magnetic excitations (0 - 2.5 eV). Ti 3d orbital
excitations yield complete information on the temperature-dependent
crystal-field splitting. In the spin-Peierls phase we observe a dispersive
two-spinon excitation and estimate the inter- and intra-dimer magnetic exchange
coupling from a comparison to cluster calculations
Recommended from our members
Can social inclusion be evaluated? Investigating the psychometric properties of the social inclusion intervention scale
The present study aims to validate a newly developed Social Inclusion Intervention Scale (SIIS) using Exploratory Factor Analysis and Confirmatory Factor Analysis. The participants were 128 children aged 45-84 month-old from local integrated preschools in Hong Kong. The factor structure of the SIIS fit the data well (RMSEA = .08, NFI = .92, and TLI = .95, CFI = .96, SRMR = .04), with good convergent validity (all CR values > .92, all AVE values > .61). The internal consistency was good across items (all α values > .91) and factors (all CR values > .92). Hence, the sample obtained from the clinical trials of this study showed a good model fit, which suggested that the SIIS is adequate in measuring social inclusion among preschool children in social inclusion intervention programmes. The implications of the two emerged themes of social inclusion from the findings, Relationships and Acceptance, are further discussed to ascertain how they shed light on the design of social inclusion intervention
Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy
The conducting interface of LaAlO/SrTiO heterostructures has been
studied by hard X-ray photoelectron spectroscopy. From the Ti~2 signal and
its angle-dependence we derive that the thickness of the electron gas is much
smaller than the probing depth of 4 nm and that the carrier densities vary with
increasing number of LaAlO overlayers. Our results point to an electronic
reconstruction in the LaAlO overlayer as the driving mechanism for the
conducting interface and corroborate the recent interpretation of the
superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless
type.Comment: 4 pages, 4 figure
Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b
We present the transmission spectrum of HAT-P-12b through a joint analysis of
data obtained from the Hubble Space Telescope Space Telescope Imaging
Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the
wavelength range 0.3-5.0 m. We detect a muted water vapor absorption
feature at 1.4 m attenuated by clouds, as well as a Rayleigh scattering
slope in the optical indicative of small particles. We interpret the
transmission spectrum using both the state-of-the-art atmospheric retrieval
code SCARLET and the aerosol microphysics model CARMA. These models indicate
that the atmosphere of HAT-P-12b is consistent with a broad range of
metallicities between several tens to a few hundred times solar, a roughly
solar C/O ratio, and moderately efficient vertical mixing. Cloud models that
include condensate clouds do not readily generate the sub-micron particles
necessary to reproduce the observed Rayleigh scattering slope, while models
that incorporate photochemical hazes composed of soot or tholins are able to
match the full transmission spectrum. From a complementary analysis of
secondary eclipses by Spitzer, we obtain measured depths of
and at 3.6 and 4.5 m, respectively, which are
consistent with a blackbody temperature of K and indicate
efficient day-night heat recirculation. HAT-P-12b joins the growing number of
well-characterized warm planets that underscore the importance of clouds and
hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with
proof correction
Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS
We present Hubble Space Telescope near-infrared transit photometry of the
nearby hot-Jupiter HD189733b. The observations were taken with the NICMOS
instrument during five transits, with three transits executed with a narrowband
filter at 1.87 microns and two performed with a narrowband filter at 1.66
microns. Our observing strategy using narrowband filters is insensitive to the
usual HST intra-orbit and orbit-to-orbit measurement of systematic errors,
allowing us to accurately and robustly measure the near-IR wavelength
dependance of the planetary radius. Our measurements fail to reproduce the
Swain et al. absorption signature of atmospheric water below 2 microns at a
5-sigma confidence level. We measure a planet-to-star radius contrast of
0.15498+/-0.00035 at 1.66 microns and a contrast of 0.15517+/-0.00019 at 1.87
microns. Both of our near-IR planetary radii values are in excellent agreement
with the levels expected from Rayleigh scattering by sub-micron haze particles,
observed at optical wavelengths, indicating that upper-atmospheric haze still
dominates the near-IR transmission spectra over the absorption from gaseous
molecular species at least below 2 microns.Comment: 9 pages, 7 figures. Accepted for publication in A&
An Evaluative Review of Recycled Waste Material Utilization in High-Performance Concrete
The disposal of waste materials and their adverse effects on the environment have become a worldwide concern, disturbing the fragile ecological equilibrium. With growing awareness of sustainability in the construction industry, it is of great importance to recycle waste materials for producing high-performance concrete (HPC). This aligns with the twelfth Sustainable Development Goal (SDG) of the United Nations, emphasizing responsible production and consumption, especially concerning the production of HPC using waste materials and energy-efficient methods. The review evaluates the purposeful utilization of recycled waste materials to improve the engineering characteristics of HPC, taking into consideration pertinent literature. It encompasses a comparative evaluation of strength development, water absorption, microstructures, and x-ray diffraction (XRD) analyses of HPC manufactured with different types of recycled waste materials. The key result of the review showed that using incinerated bottom ash (IBA) below 25% and incorporating 40% copper slag can enhance HPC’s mechanical performance. Additionally, recycled coarse aggregate (RCA) can replace up to 50% of conventional aggregate in self-compacting HPC with minimal impact on durability properties. In HPC cement substitution research, fly ash, silica fume, and metakaolin are prominent due to their availability, with fly ash showing remarkable durability when used as a 15% cement replacement. This thorough review offers valuable insights for optimizing the utilization of recycled waste materials in the development of environmentally friendly HPC. Doi: 10.28991/CEJ-2023-09-11-020 Full Text: PD
- …