2,136 research outputs found
Deep Remix: Remixing Musical Mixtures Using a Convolutional Deep Neural Network
Audio source separation is a difficult machine learning problem and
performance is measured by comparing extracted signals with the component
source signals. However, if separation is motivated by the ultimate goal of
re-mixing then complete separation is not necessary and hence separation
difficulty and separation quality are dependent on the nature of the re-mix.
Here, we use a convolutional deep neural network (DNN), trained to estimate
'ideal' binary masks for separating voice from music, to perform re-mixing of
the vocal balance by operating directly on the individual magnitude components
of the musical mixture spectrogram. Our results demonstrate that small changes
in vocal gain may be applied with very little distortion to the ultimate
re-mix. Our method may be useful for re-mixing existing mixes
Drilling of shallow marine sulfide-sulfate mineralisation in south-eastern Tyrrhenian Sea, Italy; Seafloor sulfides, Tyrrhenian Sea, highsulfidation; hydrothermal systems, Palinuro
Semi-massive to massive sulfides with abundant late native sulfur were drilled in a shallowwater hydrothermal system in an island arc volcanic setting at the Palinuro volcanic complex in the Tyrrhenian Sea, Italy. Overall, 12.7 m of sulfide mineralisation were drilled in a sediment-filled
depression at a water depth of 630 - 650 m using the
lander-type Rockdrill I drill rig of the British Geological
Survey. Polymetallic (Zn, Pb, Sb, As, Ag) sulfides
overlie massive pyrite. The massive sulfide mineralisation contains a number of atypical minerals, including enargite-famatinite, tennantite-tetrahedrite, stibnite, bismuthinite, and Pb-,Sb-, and Ag-sulfosalts, that do not commonly occur in mid-ocean ridge massive sulfides. Analogous to subaerial epithermal deposits, the occurrence of these minerals and the presence of abundant native sulfur suggest an intermediate to high sulfidation and/or high oxididation state of the hydrothermal fluids in contrast to the near-neutral and reducing fluids from which base metal-rich massive sulfides along mid-ocean ridges typically form. Oxidised conditions during sulfide deposition are likely related to the presence of magmatic volatiles in the mineralising fluids that were derived from a degassing magma chamber below the Palinuro volcanic complex
Fungal community and functional responses to soil warming are greater than for soil nitrogen enrichment
Soil fungi are key regulators of forest carbon cycling and their responses to global change have effects that ripple throughout ecosystems. Global changes are expected to push many fungi beyond their environmental niches, but there are relatively few studies involving multiple, simultaneous global change factors. Here, we studied soil fungal diversity, community composition, co-occurrence patterns, and decomposition gene responses to 10 years of soil warming and nitrogen addition, alone and in combination. We specifically examined whether there were fungal community characteristics that could explain changes in soil carbon storage and organic matter chemistry in chronically warmed and fertilized soil. We found that fungal communities in warmed soils are less diverse and shift in composition. Warming also favored hyperdominance by a few mycorrhizal fungal species and lowered manganese peroxidase but increased hydrolytic enzyme encoding gene potentials. Nitrogen addition did not significantly affect fungal community composition but, like warming, did reduce fungal diversity and favored overdominance by a unique set of mycorrhizal taxa. Warming alone and in combination with nitrogen addition also reduced negative but increased positive fungal co-occurrence probabilities, promoting species coexistence. Negative fungal co-occurrence was positively correlated to soil carbon content, while the proportion of fungal hydrolytic enzyme encoding genes was negatively correlated with soil carbon content. This may reflect fungal life history trade-offs between competition (e.g., reduced negative co-occurrence) and resource acquisition (e.g., higher abundance of hydrolytic enzyme encoding genes) with implications for carbon storage
Errors of Measurement for Blood Parameters and Physiological and Performance Measures After the Decay of Short-Term Heat Acclimation
Introduction: It is important to determine the accuracy of measurements relative to potential treatment effects, with time intervals between tests. Purpose: The aim of this study was to assess the error of measurement for blood parameters, physiological, and performance measures after the decay of short-term heat acclimation. Methods: Ten trained males (Mean±SD: age 28±7 y; body mass 74.6±4.4 kg; 4.26±0.37 L.min-1; peak power output (PPO) 329±42 W) completed an exercising heat stress test (HST) at baseline, 2nd day after acclimation and then during decay at 1, 2, 3 and 5-6 wks. CoV (95% CI), SE (95% CI) and Pearsons (r) were used for analysis of blood volume (blood, plasma, red cell volume, mean hemoglogin mass); plasma (aldosterone, arginine vasopressin [AVP], total protein, albumin, sodium); physiological (rectal temperature, cardiac frequency) and performance (exercise performance capacity, PPO). Results: The CoV (95% CI), SE (95% CI) and r with a 1-wk interval for blood volume was 2.3% (1.6 to 4.3; 1.9 [1.3 to 3.4 mL.Kg-1]; r=0.93; n=10). After 2-wk and 5-6 wks this had increased to 4.9% (3.4 to 9.3; 3.8 [2.6 to 7.0 mL.Kg-1]; r=0.76; n=9) and 5.5% (3.6 to 12.8; 4.5 [2.9 to 10.0 mL.Kg-1]; r=0.65; n=7) respectively. Conclusions: Blood volume and physiological measures demonstrated the least error one week apart but increased thereafter. Plasma concentrations and performance markers had the greatest error with repeat measures after one week. Therefore, for greater reliability and low measurement error measures should be taken no more than one week a part in repeated experimentation
Adaptive Avoidance of Reef Noise
Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise
Errors of measurement for blood parameters, physiological and performance measures after the decay of short-term heat acclimation
Introduction: It is important to determine the accuracy of measurements relative to potential treatment effects, with time intervals between tests. Purpose: The aim of this study was to assess the error of measurement for blood parameters, physiological, and performance measures after the decay of short-term heat acclimation. Methods: Ten trained males (Mean±SD: age 28±7 y; body mass 74.6±4.4 kg; 4.26±0.37 L.min-1; peak power output (PPO) 329±42 W) completed an exercising heat stress test (HST) at baseline, 2nd day after acclimation and then during decay at 1, 2, 3 and 5-6 wks. CoV (95% CI), SE (95% CI) and Pearsons (r) were used for analysis of blood volume (blood, plasma, red cell volume, mean hemoglogin mass); plasma (aldosterone, arginine vasopressin [AVP], total protein, albumin, sodium); physiological (rectal temperature, cardiac frequency) and performance (exercise performance capacity, PPO). Results: The CoV (95% CI), SE (95% CI) and r with a 1-wk interval for blood volume was 2.3% (1.6 to 4.3; 1.9 [1.3 to 3.4 mL.Kg-1]; r=0.93; n=10). After 2-wk and 5-6 wks this had increased to 4.9% (3.4 to 9.3; 3.8 [2.6 to 7.0 mL.Kg-1]; r=0.76; n=9) and 5.5% (3.6 to 12.8; 4.5 [2.9 to 10.0 mL.Kg-1]; r=0.65; n=7) respectively. Conclusions: Blood volume and physiological measures demonstrated the least error one week apart but increased thereafter. Plasma concentrations and performance markers had the greatest error with repeat measures after one week. Therefore, for greater reliability and low measurement error measures should be taken no more than one week a part in repeated experimentation
Multiple genetic associations with Irish wolfhound dilated cardiomyopathy
Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH
Data review for 3LN redfish in preparation for an updated management strategy evaluation
Data review for 3LN redfish in preparation for an updated management strategy evaluationVersión del editor
Development and piloting of an exposure database and surveillance system for DOE cleanup operations
An industrial hygiene exposure database and surveillance system was developed in partnership between National Institute for Occupational Safety and Health (NIOSH)-funded independent investigators and practicing industrial hygienists at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colo. RFETS is a former U.S. Department of Energy nuclear weapons plant that is now in cleanup phase. This project is presented as a case study in the development of an exposure database and surveillance system in terms that are generalizable to most other industries and work contexts. Steps include gaining organizational support; defining system purpose and scope; defining database elements and coding; planning practical and efficient analysis strategies; incorporating reporting capabilities; and anticipating communication strategies that maximize the probability that surveillance findings will feed back to preventive applications. For each of these topics, the authors describe both general considerations as well as the specific choices made for this system. An important feature of the system is a two-tier task-coding scheme comprising 33 categories of task groups. Examples of grouped analyses of exposure data captured during the system pilot period demonstrate applications to exposure control, medical surveillance, and other preventive measures. Reprinted by permission of the publisher
- …