250 research outputs found

    The need for carbon emissions-driven climate projections in CMIP7

    Get PDF
    Previous phases of the Coupled Model Intercomparison Project (CMIP) have primarily focused on simulations driven by atmospheric concentrations of greenhouse gases (GHGs), both for idealized model experiments, and for climate projections of different emissions scenarios. We argue that although this approach was pragmatic to allow parallel development of Earth System Model simulations and detailed socioeconomic futures, carbon cycle uncertainty as represented by diverse, process-resolving Earth System Models (ESMs) is not manifested in the scenario outcomes, thus omitting a dominant source of uncertainty in meeting the Paris Agreement. Mitigation policy is defined in terms of human activity (including emissions), with strategies varying in their timing of net-zero emissions, the balance of mitigation effort between short-lived and long-lived climate forcers, their reliance on land use strategy and the extent and timing of carbon removals. To explore the response to these drivers, ESMs need to explicitly represent complete cycles of major GHGs, including natural processes and anthropogenic influences. Carbon removal and sequestration strategies, which rely on proposed human management of natural systems, are currently represented upstream of ESMs in an idealized fashion during scenario development. However, proper accounting of the coupled system impacts of and feedback on such interventions requires explicit process representation in ESMs to build self-consistent physical representations of their potential effectiveness and risks under climate change. We propose that CMIP7 efforts prioritize simulations driven by CO2 emissions from fossil fuel use, projected deployment of carbon dioxide removal technologies, as well as land use and management, using the process resolution allowed by state-of-the-art ESMs to resolve carbon-climate feedbacks. Post-CMIP7 ambitions should aim to incorporate modeling of non-CO2 GHGs (in particular sources and sinks of methane) and process-based representation of carbon removal options. Such experiments would allow resources to be allocated to policy-relevant climate projections and better real-time information related to the detectability and verification of emissions reductions and their relationship to expected near-term climate impacts. Such efforts will provide information on the range of possible future climate states including Earth system processes and feedbacks which are increasingly well-represented in ESMs, thus forming a critical and complementary pillar underpinning proposed km-scale climate modeling activities and calls to better utilize novel machine learning approaches

    Enfermidades determinadas pelo princípio radiomimético de Pteridium aquilinum (Polypodiaceae)

    Full text link

    Environmental Design for Patient Families in Intensive Care Units

    Full text link

    Long COVID and cardiovascular disease: a prospective cohort study

    Get PDF
    Background Pre-existing cardiovascular disease (CVD) or cardiovascular risk factors have been associated with an increased risk of complications following hospitalisation with COVID-19, but their impact on the rate of recovery following discharge is not known. Objectives To determine whether the rate of patient-perceived recovery following hospitalisation with COVID-19 was affected by the presence of CVD or cardiovascular risk factors. Methods In a multicentre prospective cohort study, patients were recruited following discharge from the hospital with COVID-19 undertaking two comprehensive assessments at 5 months and 12 months. Patients were stratified by the presence of either CVD or cardiovascular risk factors prior to hospitalisation with COVID-19 and compared with controls with neither. Full recovery was determined by the response to a patient-perceived evaluation of full recovery from COVID-19 in the context of physical, physiological and cognitive determinants of health. Results From a total population of 2545 patients (38.8% women), 472 (18.5%) and 1355 (53.2%) had CVD or cardiovascular risk factors, respectively. Compared with controls (n=718), patients with CVD and cardiovascular risk factors were older and more likely to have had severe COVID-19. Full recovery was significantly lower at 12 months in patients with CVD (adjusted OR (aOR) 0.62, 95% CI 0.43 to 0.89) and cardiovascular risk factors (aOR 0.66, 95% CI 0.50 to 0.86). Conclusion Patients with CVD or cardiovascular risk factors had a delayed recovery at 12 months following hospitalisation with COVID-19. Targeted interventions to reduce the impact of COVID-19 in patients with cardiovascular disease remain an unmet need

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s√ = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions
    corecore