716 research outputs found

    Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects

    Get PDF
    The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent that considerable regulation is exerted after this key regulatory step. Transcript processing, protein stability, and cofactor availability have all been reported to influence circadian rhythms in a variety of species. We used a genetic screen to identify a mutation within a putative RNA binding protein (SPLICEOSOMAL TIMEKEEPER LOCUS1 [STIPL1]) that induces a long circadian period phenotype under constant conditions. STIPL1 is a homolog of the spliceosomal proteins TFP11 (Homo sapiens) and Ntr1p (Saccharomyces cerevisiae) involved in spliceosome disassembly. Analysis of general and alternative splicing using a high-resolution RT-PCR system revealed that mutation of this protein causes less efficient splicing of most but not all of the introns analyzed. In particular, the altered accumulation of circadian-associated transcripts may contribute to the observed mutant phenotype. Interestingly, mutation of a close homolog of STIPL1, STIP-LIKE2, does not cause a circadian phenotype, which suggests divergence in function between these family members. Our work highlights the importance of posttranscriptional control within the clock mechanism. © 2012 American Society of Plant Biologists. All rights reserved

    Palladium-catalyzed synthesis of aryl amides through silanoate-mediated hydrolysis of nitriles

    Get PDF
    A procedure for the formation of aryl amides through the palladium-catalyzed coupling of nitriles and aryl bromides, via the formation of intermediary silanoate derived imidate species is reported. Optimization was undertaken and examples of the process are described that furnish the products in up to 86% isolated yield

    Prosthesis use is associated with reduced physical self-disgust in limb amputees

    Get PDF
    Self-disgust is an emotion schema negatively affecting people’s body image and is triggered by bodily imperfections and deviations from the “normal” body envelope. In this study, we explore the idea that “normalising” the body in those with limb amputations via the prosthesis would be linked to reduced self-directed disgust. An international clinical community sample (N = 83) with mostly lower limb amputations completed measures about their demographics, prosthesis, adjustment, body image disturbance, psychological distress, and self-directed disgust in a survey design. Consistent with the “normalising” hypothesis, correlation and bootstrapped regression models revealed, first, that frequency of prosthesis use was significantly and negatively associated with physical self-disgust. Second, prosthesis use significantly mediated the exogenous effect of time since amputation on physical self-disgust. These results emphasise the psychological value of the prosthesis beyond its functional use, and stress its importance in normalising the body envelope in those with limb amputations, which may in turn promote psychological well-being

    EORNA, a barley gene and transcript abundance database

    Get PDF
    A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene and transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. Using the abundance data we developed a Barley Expression Database (EORNA*) to underpin a visualisation tool that displays comparative gene and transcript abundance data on demand as transcripts per million (TPM) across all samples and all the genes. EORNA provides gene and transcript models for all of the transcripts contained in BaRTV1.0, and these can be conveniently identified through either BaRT or HORVU gene names, or by direct BLAST of query sequences. Browsing the quantification data reveals cultivar, tissue and condition specific gene expression and shows changes in the proportions of individual transcripts that have arisen via alternative splicing. TPM values can be easily extracted to allow users to determine the statistical significance of observed transcript abundance variation among samples or perform meta analyses on multiple RNA-seq experiments. * EĂČrna is the Scottish Gaelic word for Barley.</p

    Ill-posedness of degenerate dispersive equations

    Full text link
    In this article we provide numerical and analytical evidence that some degenerate dispersive partial differential equations are ill-posed. Specifically we study the K(2,2) equation ut=(u2)xxx+(u2)xu_t = (u^2)_{xxx} + (u^2)_{x} and the "degenerate Airy" equation ut=2uuxxxu_t = 2 u u_{xxx}. For K(2,2) our results are computational in nature: we conduct a series of numerical simulations which demonstrate that data which is very small in H2H^2 can be of unit size at a fixed time which is independent of the data's size. For the degenerate Airy equation, our results are fully rigorous: we prove the existence of a compactly supported self-similar solution which, when combined with certain scaling invariances, implies ill-posedness (also in H2H^2)

    The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 (SnRK1) stability

    Get PDF
    The deposited article is a post-print version and has been submitted to peer review.This publication hasn't any creative commons license associated.This deposit is composed by the main article, and it hasn't any supplementary materials associated.The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars.Fundação para a CiĂȘncia e a Tecnologia grants: (PTDC/BIA-PLA/3937/2012, PTDC/BIA-PLA/1084/2014, SFRH/BPD/80073/2011, SFRH/BPD/94796/2013); EMBO Installation Program: (EMBO-Proj.1984); Scottish Government Rural and Environment Science and Analytical Services (RESAS).info:eu-repo/semantics/publishedVersio

    The Impact of Sensitive Research on the Researcher: Preparedness and Positionality

    Get PDF
    There is currently limited research exploring the impact of undertaking sensitive or challenging research on the researcher, although some textbooks explore researcher preparedness. This article presents a discussion of the findings from a research project which engaged with the seldom heard voices of researchers themselves. The aim was to explore researchers’ experiences of undertaking research on sensitive topics, or with marginalized groups, as this can expose researchers to emotionally disturbing situations throughout data collection and analysis, which can be psychologically challenging. Although ethical codes of practice include discussion around protection of both the researcher and the participant, in practice, the ethics approval process rarely considers the impact of the proposed research on the researcher. Their experiences are therefore seldom acknowledged or heard, resulting in potential distress for the researcher. Semistructured interviews were undertaken with social science researchers from a range of discipline backgrounds and at different points in their research careers (n = 10). This article explores two themes emerging from the data: preparedness and positionality. It considers what these themes mean in terms of supporting researchers who encounter challenging research data, and issues related to supporting researcher reflexivity and the requirements for institutional support offered to researchers will also be considered

    How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of <i>LATE ELONGATED HYPOCOTYL</i> (<i>LHY</i>)

    Get PDF
    One of the ways in which plants can respond to temperature is via alternative splicing (AS). Previous work showed that temperature changes affected the splicing of several circadian clock gene transcripts. Here we investigated the role of RNA‐binding splicing factors (SFs) in temperature‐sensitive alternative splicing (AS) of the clock gene LATE ELONGATED HYPOCOTYL (LHY). We characterised, in wild type plants, temperature‐associated isoform switching and expression patterns for SF transcripts from a high‐resolution temperature and time series RNA‐seq experiment. In addition we employed quantitative RT‐PCR of SF mutant plants to explore the role of the SFs in cooling‐associated AS of LHY. We show that the splicing and expression of several SFs responds sufficiently rapidly and sensitively to temperature changes to contribute to the splicing of the 5’UTR of LHY. Moreover the choice of splice site in LHY was altered in some SF mutants. The splicing of the 5’UTR region of LHY has characteristics of a molecular thermostat, where the ratio of transcript isoforms is sensitive to temperature changes as modest as 2°C and is scalable over a wide dynamic range of temperature. Our work provides novel insight into SF‐mediated coupling of the perception of temperature to post‐transcriptional regulation of the clock

    Amidation of unactivated ester derivatives mediated by trifluoroethanol

    Get PDF
    A catalytic amidation protocol mediated by 2,2,2-trifluoroethanol has been developed, facilitating the condensation of unactivated esters and amines, furnishing both secondary and tertiary amides. The complete scope and limitations of the method are described, along with modified conditions for challenging substrates such as acyclic secondary amines and chiral esters with retention of chiral integrity

    Non-Invasive Prenatal Detection of Trisomy 21 Using Tandem Single Nucleotide Polymorphisms

    Get PDF
    BACKGROUND: Screening tests for Trisomy 21 (T21), also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA. METHODS AND FINDINGS: Highly heterozygous tandem Single Nucleotide Polymorphism (SNP) sequences on chromosome 21 were analyzed using High-Fidelity PCR and Cycling Temperature Capillary Electrophoresis (CTCE). This approach was used to blindly analyze plasma DNA obtained from peripheral blood from 40 high risk pregnant women, in adherence to a Medical College of Wisconsin Institutional Review Board approved protocol. Tandem SNP sequences were informative when the mother was heterozygous and a third paternal haplotype was present, permitting a quantitative comparison between the maternally inherited haplotype and the paternally inherited haplotype to infer fetal chromosomal dosage by calculating a Haplotype Ratio (HR). 27 subjects were assessable; 13 subjects were not informative due to either low DNA yield or were not informative at the tandem SNP sequences examined. All results were confirmed by a procedure (amniocentesis/CVS) or at postnatal follow-up. Twenty subjects were identified as carrying a disomy 21 fetus (with two copies of chromosome 21) and seven subjects were identified as carrying a T21 fetus. The sensitivity and the specificity of the assay was 100% when HR values lying between 3/5 and 5/3 were used as a threshold for normal subjects. CONCLUSIONS: In summary, a targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal T21 in maternal plasma when sufficient fetal DNA is present in maternal plasma
    • 

    corecore