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EORNa, a barley gene and 
transcript abundance database
Linda Milne1, Micha Bayer  1, Paulo Rapazote-Flores1, Claus-Dieter Mayer2, Robbie Waugh  3,4,5  
& Craig G. Simpson  3 ✉

A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene and 
transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. Using the 
abundance data we developed a Barley Expression Database (EORNA*) to underpin a visualisation 
tool that displays comparative gene and transcript abundance data on demand as transcripts per 
million (TPM) across all samples and all the genes. EORNA provides gene and transcript models for 
all of the transcripts contained in BaRTV1.0, and these can be conveniently identified through either 
BaRT or HORVU gene names, or by direct BLAST of query sequences. Browsing the quantification data 
reveals cultivar, tissue and condition specific gene expression and shows changes in the proportions 
of individual transcripts that have arisen via alternative splicing. TPM values can be easily extracted to 
allow users to determine the statistical significance of observed transcript abundance variation among 
samples or perform meta analyses on multiple RNA-seq experiments. * Eòrna is the Scottish Gaelic 
word for Barley.

Background & Summary
Barley is one of our earliest domesticated crops and is used for food and processed as malt to produce beer 
and spirits. It is a widely studied crop model with abundant genetic resources that include diverse natural culti-
vated, wild and landrace collections, experimentally constructed populations, introgression and mutant lines. Its 
robust diploid genetics are supported by numerous high-resolution linkage maps and fully sequenced reference 
and pan-genome sequences1–5. Genomic diversity has contributed to barley being grown worldwide, producing 
harvestable yields under a broad range of environmental conditions and climates1,4,6. As a direct consequence, 
variation in gene expression contributes implicitly to its adaptive response. Plant gene expression constantly 
changes throughout the day, throughout plant development and responds to changing environmental conditions, 
providing a mechanism for different genotypes to react and adapt to both transient and chronic stresses (For 
example7–13).

Although the responses of individual genes to specific genetic, biological or environmental interventions are 
frequently described, whole transcriptome responses over multiple growth stages and conditions, and conse-
quently the network of genes and transcripts involved in these responses, are largely unknown. As growth, mor-
phology and physiology vary substantially among barley genotypes, either when indistinguishable genotypes 
are grown under different conditions or when different genotypes are grown under identical conditions, their 
transcriptomes reveal a landscape that is highly dynamic, adaptable and unique to the applied conditions14,15. This 
is not simply the product of the regulation of gene expression at the level of transcription. Differentially abundant 
precursor messenger RNAs (pre-mRNAs) may be further subjected to alternative splice site selection, forming an 
assembly of specific transcript isoforms10,13,16–18. The cellular transcriptome is therefore comprised of transcripts 
derived from a combination of both transcriptional and post-transcriptional processes.

A high confidence barley reference transcript dataset (BaRTv1.0) represented by 60,444 gene models and 
177,240 transcript sequences is provided in a database (https://ics.hutton.ac.uk/barleyrtd/index.html) that posi-
tions the transcripts on the barley cv. Morex reference genome version 119. The BaRTv1.0 reference transcript 
dataset (RTD) enables rapid and precise quantification using non-alignment bioinformatic tools such as Kallisto 
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and Salmon from short-read RNA-seq data20,21. Levels of expression from these tools are measured in Transcripts 
per million (TPM) for a given BaRTv1.0 transcript22. Quantification at the transcript level further allows robust 
and routine analysis of alternative splicing23–25. Here we used the barley reference transcript dataset, BaRTv1.0, to 
demonstrate the value and utility of a barley RTD for gene expression studies and AS analysis. We used BaRTv1.0 
to quantify transcripts in 22 RNA-seq datasets covering 843 samples from a broad range of genotypes, tissues 
and different abiotic and biotic stress conditions. BaRTv1.0 was assembled against the cv. Morex genome, but 
in this analysis we used RNA-seq data from a wide-range of cultivars and lines and found that mapping rates in 
all cultivars remained high. We found expression and alternative splicing abundances varied between cultivars, 
tissues/organs and between environmental changes and stresses. The data is presented in a freely available single 
accessible database that gives visual and numerical access to expression data for barley genes across all the tested 
barley samples (https://ics.hutton.ac.uk/eorna/index.html.

The importance of comparing between sample sets allows researchers to answer how their gene of inter-
est is expressed in other tissues or under what condition. Commercially available Genevestigator®26,27 and the 
freely available Bio-Analytic resource (BAR)28,29 visualise barley gene transcriptional expression and regulation 
RNA-seq and microarray data across multiple experimental conditions. Here, individual transcript RNA-seq 
expression results are displayed in graphical form, simply as TPM values directly from the outputs of Salmon, 
without considering batch differences that may occur between samples, differences among experimental stud-
ies and without statistical significances. To include statistical analysis and thereby define significant differential 
gene expression (DE) or differential alternative splicing (DAS) would require complete control over experimental 
design, sample preparation and sequencing analysis. These interactive plots, therefore, simply permit rapid visual 
assessment of expression levels of selected genes of interest. TPM values are accessible and allow users to perform 
their own DE and DAS analysis, such as found in the 3D RNA-seq interactive graphical user interface30 or by 
comparing multiple RNA-seq datasets by meta-analysis methods31–34. Output expression values such as TPM 
from RNA-seq experiments are under continuous discussion and development and may be affected by sequenc-
ing protocols and experimental conditions35. TPM values were calculated using Salmon to allow transcript abun-
dances to be compared between samples. To check that the TPM values were representative as expression values, 
we determined variability across all the samples using linear regression analyses and found that the output from 
Salmon showed the lowest variability and therefore provided the best normalisation across all the samples.

We show examples of genes that clearly illustrate the wide utility offered by access to datasets from mul-
tiple RNA-seq experiments. The plots identified genes that were uniquely expressed in a cultivar, tissue or 
condition specific manner. Considering the range of samples displayed, the unique abundances in tissue- or 
condition-specific samples support the potential value of these genes as expression ‘biomarkers’ for that tissue or 
condition. The plots identified cis- and trans-acting induced (or loss of) expression of genes that segregate among 
near isogenic lines or mutant populations, identified cultivar specific polymorphisms or insertion/deletions and 
alternatively spliced transcripts including significant switching in splice site selection as a response to a condition 
were found. Alteration of transcript isoform abundance can alter translational reading frames or transcript sta-
bility. Ultimately, BaRT RTD is part of a unique pipeline that facilitates fast robust routine quantification of barley 
gene transcripts, visualised in EORNA through interactive intuitive transcript abundance plots linked to gene 
models and metadata, finally leading to robust and consistent estimation of barley gene expression and alternative 
splicing across multiple samples.

Methods
Selected RNa-seq datasets and data processing. A total of 22 publicly available RNA-seq datasets 
consisting of 843 samples including replicates were downloaded from NCBI - Sequence Read Archive database 
(https://www.ncbi.nlm.nih.gov/sra/) to quantify against the barley RTD (BaRTv1.0) (Supplementary Table S1). 
All datasets were produced using Illumina platforms and were selected with mostly > 90 bp and paired-end reads 
with a quality of q >  = 20. All raw data were processed using Trimmomatic-0.3036 using default settings to pre-
serve a minimum Phred score of Q20 over 60 bp. One of the samples (NOD1) was over-represented with respect 
to read numbers due to a repeat run being necessary and was therefore subsampled to 60 million reads. Read 
quality checks before and after trimming were performed using FastQC (fastqc_v0.11.5) (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/).

Generation of the EORNa database. A database and website front-end were constructed to allow easy 
access to BaRTv1.0 transcripts and expression analyses using the LAMP configuration (Linux, Apache, mySQL, 
and Perl). Additional annotation was added to the transcripts by homology searching against the predicted pep-
tides from rice (rice pseudo-peptides v 6.037) and from Arabidopsis thaliana (TAIR pseudo-peptides v 10, The 
Arabidopsis Information Resource)38 using BLASTX at an e-value cutoff of less than 1e-5039. The website https://
ics.hutton.ac.uk/eorna/index.html allows users to interrogate data through an entry point via three methods: (i) 
a BLAST search of the reference barley assembly or the predicted transcripts; (ii) a keyword search of the derived 
rice and Arabidopsis thaliana BLAST annotation, and; (iii) a direct string search using the transcript, gene, or con-
tig identifiers. To distinguish this set of predicted genes and transcripts from previously published ‘MLOC_’ and 
HORVU identifiers, genes were prefixed as ‘BART1_0-u00000’ for the unpadded or ‘BART1_0-p00000’ for the 
padded QUASI version, with BART1_0-p00000.000 representing the individual transcript number. The RNA-seq 
TPM values are shown in interactive stacked bar plots produced with plotly R libraries (https://plotly.com/r/) and 
the TPM values are also available as a text file for each gene. The exon structures of the transcripts for each gene 
are shown in graphical form, and links to the transcripts themselves provides access to the transcript sequences 
in FASTA format. Each transcript has also been compared to the published set of predicted genes (HORVUs) to 
provide backwards compatibility.
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GO annotation. Transcript sequences were translated to protein sequences using TransDecoder (https://
github.com/TransDecoder/TransDecoder/wiki). Gene Ontology (GO) annotation was then determined by run-
ning all 60,444 genes in BaRTv1.0 through Protein ANNotation with Z-score (PANNZER)40. GO annotations 
were based on predicted proteins with ORF >100 amino acids and orthologues found in the Uniprot database. 
Output annotations were placed in a lookup table with text descriptions about protein functionality.

Data Records
BaRTv1.0 and BaRTv1.0 – QUASI are available as.fasta and.GFF files and can be downloaded from https://ics.hut-
ton.ac.uk/barleyrtd-new/downloads.html. An additional version of the RTD is available in the Zenodo repository 
(https://doi.org/10.5281/zenodo.3360434)41.

The results matrix containing all the TPM values across all 843 samples for all 177,240 BaRTv1.0 transcripts 
can be downloaded directly along with the metadata file from https://ics.hutton.ac.uk/eorna/download.html. 
An additional version of the results matrix and metadata file is available in the Zenodo repository (https://doi.
org/10.5281/zenodo.4286079)42. To develop the plots and create the transcript abundance values (TPMs), pub-
licly available sequences from the Sequence Read Archive (SRA) or European Nucleotide Archive (ENA) were 
used (accession numbers: PRJEB13621; PRJEB18276; PRJNA324116; PRJEB12540; PRJEB8748; PRJNA275710; 
PRJNA430281; PRJNA378582; PRJNA378723; PRJNA439267; PRJNA396950; PRJDB4754; PRJNA428086; 
PRJEB21740; PRJEB25969; PRJNA378334; PRJNA315041; PRJNA294716; PRJEB14349; PRJEB32063; 
PRJEB19243; PRJNA558196. Metadata on these datasets can be found in Supplementary Tables 1 and 2.

technical Validation
BaRTv1.0 database and expression plots. The BaRTv1.0 reference transcript dataset consists of 60,444 
genes and 177,240 transcripts mapped to the cv. Morex pseudomolecules. To access the barley reference tran-
script dataset a public database and website front-end were constructed to allow researchers to download the 
reference transcript dataset and interrogate the data via a BLAST search, keyword search or string search using 
the BaRT or HORVU gene/transcript identifiers (https://ics.hutton.ac.uk/barleyrtd/index.html)19. The transcripts 
are arranged as gene models and viewed through GBrowse43. Transcript sequences are given in FASTA format 
and homologies of the longest transcripts are compared to Arabidopsis, Rice and Brachypodium. Until now, 
Salmon calculated TPM values for each gene across 16 different tissues/developmental stages in both graphic and 
tabular formats is presented. Since the initial publication, the BaRTV1.0 database has continued to evolve and 
we have established Gene Ontology (GO) annotation for 26,794 genes using Protein ANNotation with Z-score 
(PANNZER)40 with text descriptions about protein functionality and provided a lookup table for download.

EORNA database - Quantification of multiple RNA-seq samples and expression plots. Establishing  
BaRTv1.0 has facilitated fast, precise quantification of RNA transcript abundance from any barley short-read 
RNA-seq dataset. We used BaRTv1.0 to quantify transcript abundance and diversity observed in a collection of 22 
Illumina short-read RNA-seq experiments, 18 of which were obtained from the short-read archive (SRA) and the 
remainder produced in-house. Each RNA-seq experiment was given a label that contained the letter E (referring 
to external datasets) followed by a number or the letter I (internal datasets) followed by a number. The datasets 
contained a total of 843 samples and 3,762 Gbp of expressed sequences. The samples consist of both barley lan-
draces and cultivars, an array of organs and tissues at different developmental stages, and plants/seedlings grown 
under a range of biotic and abiotic stresses (Supplementary Tables S1 and S2). Most RNA-seq datasets consisted 
of paired-end reads (90–150 bp in length) and were produced using Illumina HiSeq 2000, 2500, 4000 or HiSeq X 
instruments. Exceptions were the dataset from Golden Promise anthers and meiocytes, which contained over 2 
billion paired end 35–76 bp reads. The raw RNA-seq data from all samples was trimmed and adapters removed 
using Trimmomatic and quality controlled using FastQC. TPM values were calculated individually for all 843 
RNA-seq samples using Salmon (version Salmon-0.8.2) using BaRTv1.0-QUASI, a ‘padded’ version of BaRTv1.0 
which has been shown to improve transcript quantification, as the reference transcript dataset19. As BaRTv1.0 was 
assembled using the cv. Morex reference genome, we first assessed the mapping rates from all samples, including 
those from other genotypes. The Morex samples showed an average mapping rate of 94.39% (SD 8.18%) while the 
remaining samples, which consisted of 60 different barley genotypes showed a slightly reduced mapping rate of 
92.32% (SD 4.93%) (Supplementary Table 3).

Salmon estimates the relative abundance of different transcript isoforms in the form of transcripts per million 
(TPM), a commonly used normalisation method computed considering the library size, number of reads and the 
effective length of the transcript20,21. The EORNA data provides an opportunity to examine the effect of the nor-
malisation procedure across many diverse samples. Regression analyses was used to explore the raw read counts 
and different versions of normalised counts by library size and effective length of the transcript. Good normalisa-
tion procedures will remove most of the dependency on these variables such that the output of regression analysis 
represented by the R-square value (which measures the percentage of variation accounted for) can be used to 
compare different normalisations. Here, an R-square value closer to zero indicates effective normalisation. For 
efficient calculation, we first reduced the number of transcripts by selecting those which had non-zero values in at 
least 80% of the samples. This left 32739 transcripts over the 843 samples and gave 27,598,977 values to study how 
different normalisation approaches accounted for variation between experiments. Regression analysis was used 
first to explore the relationship between raw read counts by library size and length of the transcript, which gave 
an adjusted R-squared value of 1.28% indicating low predictive value within the dataset. Transposing variables 
to a log-scale increased the R-square to 10.68%, which suggested a far stronger predictive value on this scale and 
shows that a large amount of variation in the raw counts can be removed by log-transforming. Replacing the log 
counts with normalised data using Salmon’s effective transcript length, which corrects for transcript length bias20, 
reduced the adjusted R-square value to 0.09%. This compared to normalisation by RPKM (Reads Per Kilobase 
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per Million which normalises the raw read count by transcript length and sequencing depth) (adjusted R-square 
of 0.57%) or TPMs calculated by transcript length alone (adjusted R-square of 0.62%). (Online-only Table 1). In 
summary, the normalised TPM outputs from Salmon using an effective transcript length reduced variability such 
that most of the dependency on library size and transcript length was removed.

The normalised output TPM values from Salmon were collated and plotted using plotly R libraries (https://
plotly.com/r/) to allow quick subjective and interactive comparisons in transcript abundance levels between the 
samples. The TPM values for each gene/plot are also given as a text file for download. We chose to plot the graphs 
as the TPM values without log scaling, to show the additive changes between the samples and replicates.

Expression plot utility. Stacked bar graph plots display the TPM values calculated by Salmon for all 60,444 
genes in the database for all 843 samples, representing over 50 million plot points. The x-axis displays the 843 
samples versus the y-axis which displays transcript abundance in each sample as TPM values (Fig. 1). Each indi-
vidual sample bar graph stacks the TPM values contributed by each gene transcript to permit visualisation of the 
differences in transcript abundances between different samples and helps identify the predominant transcript(s) 
for that gene. Each plot may be scanned interactively to activate a label that gives information on the RNA-seq 
experiment, sample run number, tissue and treatment for that sample (from the metadata table, Supplementary 
Table 2). Users can zoom in to focus on individual experiment and sample plots. Without processing the data 
or assigning any statistical significance to the graphs, the results presented allow the researcher to determine 
whether their gene(s) of interest are expressed in the different experiments and among samples within an exper-
iment. Large changes in TPM abundances were observed between the samples for many genes. For example, 
BaRT1_u-31819 showed altered gene expression in the root meristematic zone compared to the root elongation 
and maturation zones in the E1 dataset, which is further supported by expression in the root tissue in the I1 
dataset (Fig. 1).

Tissue specific expression. The experimental panel of 22 RNA-seq datasets were from a broad range of 
cultivars, tissues, organs and biotic and abiotic conditions. The interactive plots enable the user to quickly iden-
tify potential candidate genes that show a high degree of tissue specificity. For example, BART1_0-u49225 (with 
similarity to a UDP-Glycosyltransferase superfamily protein) was specifically and highly expressed to over 1,000 
TPM in developing grain 15 days post anthesis (I1) and in developing barley spikes that contain developing grain 
(E20). Expression was segregating in hulless barley grain in recombinant inbred lines that were used to assess glu-
can content (E10). (Fig. 2a). BART1_0-u14427 was highly abundant only in tissues subjected to low temperature 
stress (E2 and I2) (Fig. 2b) and BART1_0-u50915 is one of a number of barley Pathogenesis-related 1 protein 
genes that was induced to over 10,000 TPM in response to Cochliobolus sativus (E19) and Fusarium graminearum 
(E20) (Fig. 2c).

Confirmatory expression. Interactive plots may be used to investigate the expression of genes that have 
been previously studied in a limited number of tissues/cultivars or using a different expression platform and con-
sequently expands expression analysis across the range of tissues that are currently in EORNA. For example, we 
previously described the expression of INTERMEDIUM-C (BART1_0-u26546; HORVU4Hr1G007040), a modi-
fier of lateral spikelet fertility in barley and an ortholog of the maize domestication gene TEOSINTE BRANCHED 
1. Microarray analysis of 15 tissues showed that transcript abundance was low with greatest expression in the 
developing inflorescence44. The RNA-seq panel here confirmed low abundances for this gene across all the sam-
ples (<7.5 TPM), with greatest expression in shoot apices (E7); apical meristems (E13) and developing spikes at 
the awn primordium stage (E14) (Fig. 3).

Segregation expression. The RNA-seq datasets consist of several experiments that contain mutant lines 
targeted to specific genes, recombinant inbred lines (RILs) and near isogenic lines (NILs). The expression of genes 
found at quantitative trait loci, or through genome-wide association studies show changes in gene expression 
at these loci between the parents and in the population. The seed longevity experiment (E17) illustrated gene 
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Fig. 1 Variable expression between RNA-seq samples. The plot represents transcript abundances as transcripts 
per million (TPM) across 843 samples for BaRT1_0-u31919 (similarity to a small nuclear ribonucleoprotein 
family protein). Different colours represent different transcripts for that gene. Scanning over the plot gives 
a label describing cultivar, tissue, experimental condition (if available), replicate number and the short-read 
archive sequencing read number.

https://doi.org/10.1038/s41597-021-00872-4
https://plotly.com/r/
https://plotly.com/r/


5Scientific Data |            (2021) 8:90  | https://doi.org/10.1038/s41597-021-00872-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Sample

TP
M

200

BART1_0-u49225

400
600
800

1000

500

TP
M

BART1_0-u14427

a.

b.

1200

E10
E20

I1

1000

1500

2000
E2

I2

BART1_0-u50915c.

2k

TP
M

4k
6k
8k

10k
12k
14k E19

E20

Fig. 2 Tissue and condition specific expression. (a) BART1_0-u49225 specific expression in developing grain 
tissue used in experimental RNA-seq datasets E10, E20 and I1. (b) BART1_0-u14427 specific expression in 
low temperature stress RNA-seq datasets E2 and I2. (c) BART1_0-u50915 specific expression in response to 
pathogen RNA-seq datasets E19 and E20.
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Fig. 3 Abundance levels of INTERMEDIUM-C (HvTB1) (BART1_0-u26546) across the 22 RNA-seq 
experiments. E7 – Photoperiod response RNA-seq dataset from shoot apex; E13 - Six Rowed - VRS3 RNA-
seq dataset from apical meristems; E14 - Floret development RNA-seq dataset from developing spikes at awn 
primordium stage. Abundances given in Transcripts per million (TPM). The bottom Panel shows zoomed-in 
regional views.
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expression changes in RILs and NILs from the landraces L94 (short-lived seeds) and Cebada capa (long-lived 
seeds). QTL analysis identified three QTLs on 1H (SLQ1.1 to 1.3) and a single QTL on 2H (SLQ2). Gene expres-
sion analysis identified differentially expressed genes positioned within the SLQ1 and 2 regions45. Using the inter-
active plots confirmed the barley population expression pattern of these differentially expressed genes. The plots 
show changes among the parental types retained in the recombinant inbred and near isogenic lines (Fig. 4). For 
example, BART1_0-u01011(MLOC_61374) is positioned within SLQ1.1 and showed low expression in Cebada 
capa and the NILs at SLQ1.1 (Fig. 4a) and BART1_0-u15865 (MLOC_73587) showed expression in Cebada capa 
that was absent in L94 and found expressed in SLQ2 NILs Fig. 4b). The transcript abundances of these genes were 
shown in the context of the remaining 21 RNA-seq experiments tested.

Gene targeted mutations. Deletion or substitution mutations may impact regulatory gene sequences gov-
erning the expression of a target gene or alter the protein coding region of a gene. The outcome of a mutation 
on observed transcript abundance may vary substantially, resulting in loss, reduced, maintained or increased 
transcript levels. The interactive plots allow researchers to observe rapidly and intuitively the effect of a mutation 
on the expression of a target gene and possible trans-acting effects on the expression of other genes. For example, 
experiment E19 consists of a series of disease resistance tests on cv. Morex and a gamma irradiation induced 
Morex mutant (14–40) selected for its susceptibility to spot blotch (Bipolaris sorokiniana)46. The expression of 
BART1_0-u18601; HORVU3Hr1G019920 (glycine-rich protein) and BART1_0-u41161; HORVU5Hr1G120850 
(similarity to a long- chain-fatty-acid—CoA ligase 1) were knocked out in the mutant, which is clearly observed 
in the interactive plots (Fig. 5).

Transcript variation between cultivars. To create the BaRTv1.0 RTD, transcripts from multiple data-
sets from a range of tissues, treatments and cultivars were mapped to cv. Morex pseudomolecules to maximise 
read coverage support for genes and splice junctions19. BaRTv1.0 is, therefore, a predominantly cv. Morex RTD. 
Nevertheless, transcripts that contain indels in other cultivars will be found in BaRTv1.0. Salmon quantifications 
of the 843 individual samples was able to identify and quantify cultivar specific transcripts. BaRT1_u-06868 
showed a selection of different transcripts due to genotype differences. Alignment with genomic sequence and 
the most highly abundant transcripts shows a small run of 4 GCAG repeats in one genotype compared to a run 
of 3 GCAG repeats in a different genotype. These genotype specific variant transcripts were observed across the 
range of cultivars used in the RNA-seq experiments. For example, the experimental dataset E1 shows two differ-
ent cultivars cvs. Clipper and Sahara with two different main transcript variants, which is the result of the 4 bp 
indel. Clipper shows use of the transcripts .001 and .002 while Sahara uses transcripts .005 and .006 (Fig. 6). The 
transcriptome assemblies and quantifications using BaRTv1.0 shows that cultivar specific transcripts can be easily 
distinguished.

Alternative splice site switching. Selection of alternative splice sites results in the formation of multiple 
alternative transcripts. The proportions of alternative transcripts may change in different tissues or as the result of 
a changing environment. Many of these changes require detailed analysis to determine significant changes in the 
amounts and proportions of the alternative transcripts. Nevertheless, the stacked bar graphs allow large changes 
in the abundance of alternative transcripts to be detected between samples. For example, BaRT1_u-00022 was 
expressed across all tissues but in some samples an alternative transcript, BaRT1_u-00022.001, shown in blue, 
predominated over BaRT1_u-00022.003 shown in green (Fig. 7a). The difference between the two transcripts 

BART1_0-u01011a. BART1_0-u15865b.

Fig. 4 Abundance levels of differentially expressed genes at quantitative trait loci. Detailed abundances (TPM) are 
shown for a seed longevity experiment (E17) between parents (L94 and Cebada capa), recombinant inbred lines 
(RIL114) and near isogenic lines to the L94 parent and showing variation at QTLs SLQ1 and SLQ1–3. (a) BART1_0-
u01011(MLOC_61374) is located at SLQ1.1 and (b) BART1_0-u15865 (MLOC_73587) is located at SLQ2.
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was an alternative intron in the 3′UTR, which was retained in transcript .001 and spliced out in transcript .003. 
Comparison with the meta-data (Supplementary Table 2) showed tissue specific abundance of transcript .001 
in grain/caryopsis and germinating grain (coleoptiles) in the experimental datasets E8, E10, E17, I1 and I2.  
Comparison across the different experiments and replicates supports both the tissue and cultivar specific varia-
tion. For example, the alternative 0.001 transcript was also observed in Golden Promise in datasets E11 and I6. 
The plots also illustrate dynamic changes in alternative splicing in different tissues or because of different stresses. 
For example, BaRT1_u-40919, which has similarity to a cold inducible Zinc finger-containing glycine-rich 
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inoculated with Cochliobolus sativus. The gaps arrowed between the expression in the wild type cv. Morex are 
multiple samples derived from the barley cv. Morex mutant 14–40, which shows lost expression.
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Sequence alignment between transcripts .001 and .005 shows the 4 bp deletion in cv. Sahara found in transcript 005.

https://doi.org/10.1038/s41597-021-00872-4


8Scientific Data |            (2021) 8:90  | https://doi.org/10.1038/s41597-021-00872-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

RNA-binding protein, shows switching of transcript .001 to .005 during cold stress, which is the result of the 
selection of an alternative intron (I2) (Fig. 7b). In both these cases, the reading frame of the protein is unaffected 
but extends the length of the 3′UTR in the transcripts where the intron is retained. These examples highlight 
transcript variation because of dynamic alternative splicing as a result of tissue/organ specific splicing or changing 
environmental conditions.

Data validation. We did not carry out validation experiments using alternative methods, such as RT-PCR, 
as we do not have access to all the RNA samples used to produce the RNA-seq data. However, multiple RNA-seq 
samples consisted of similar tissues or conditions that showed similar gene expression responses. This was par-
ticularly noticeable in the genes that showed tissue or condition specific expression, such as those from devel-
oping grain tissue, low temperature stress and in response to pathogens (Fig. 2). In addition, we have previously 
performed RT-PCR alternative splicing validation experiments on 5 of the tissues in the I1 RNA-seq experiment 
and found a strong correlation (R-square = 0.83) with the alternatively spliced transcript proportions of RNA-seq, 
supporting the ability of the RNA-seq data to accurately detect changes in AS19.

technical development. BaRT is under constant incremental improvement. The next release of BaRT is 
being developed by incorporating new short and, importantly, long-read RNA-seq datasets. The need to cap-
ture the diversity of different transcripts from a wider range of genotypes will further lead to the development 
of a pan-transcriptome barley RTD to match a barley pan-genome sequence5,47,48. This will ultimately result in 
recalculation of the EORNA TPM values. In addition, new RNA-seq experiments are constantly submitted to 
the sequence archives. We are currently developing a pipeline that allows automated addition of newly depos-
ited RNA-seq datasets associated with subsequent quantification using the latest RTD and updated releases of 
EORNA. This will continually expand the utility of the interactive plots and provide straightforward and open 
access of RNA-seq data to researchers, adding considerable value to the stand-alone RNA-seq datasets. Access to 
TPM values will enable the construction of transcript/co-expression/regulatory networks and support the devel-
opment of proteomic resources for barley.

Usage Notes
The expression data is easily accessible through an intuitive and easy to use Web interface: https://ics.hutton.
ac.uk/eorna/index.html.

Gene and transcript sequence information and expression data can be accessed through Homology Searches, 
Annotation Searches or thorough BLAST nucleotide or protein sequences. Barley Pseudomolecule gene names 
(HORVU numbers) can be easily translated to BART identifiers.

The plots showing individual gene expression across all the samples has a link under the plot to a text delim-
ited file with all the expression (TPMs), tissue, condition, cultivar and replicate. The whole dataset describing 
expression of all the BaRT genes can downloaded as a single txt delimited file. This is further stored at https://doi.
org/10.5281/zenodo.428607942.
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Code availability
Four scripts for FASTQC, Trimmomatic, Salmon index creation and Salmon quantification have been created and 
are available from the authors on request. There is not any custom code involved with these bioinformatic tools 
and they can be freely downloaded from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/; http://
www.usadellab.org/cms/?page=trimmomatic; https://combine-lab.github.io/salmon/.

Scripts used to generate EORNA portal pages, database components including plotly visualisations can be 
found in the github repository https://github.com/cropgeeks/eorna49. Essential source code components of the 
web page such as the JavaScript code for the plotly visualisations can also be viewed via the page source code.
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