984 research outputs found

    Enantioselective Proton Transfer Chemistry: Asymmetric Synthesis with Chiral Lithium Amide Bases

    Get PDF

    On the interactions of lipids and proteins in the red blood cell membrane

    Get PDF
    The effects of temperature and of the action of a purified phospholipase C enzyme preparation on human red blood cell membranes has been investigated by chemical analyses, circular dichroism, and proton magnetic resonance measurements. The results indicate that a substantial fraction of the phospholipids and the proteins of the membranes can change structure independently of one another, suggesting a mosaic pattern for the organization of the lipids and proteins in membranes

    Theory for Nonlinear Spectroscopy of Vibrational Polaritons

    Full text link
    Molecular polaritons have gained considerable attention due to their potential to control nanoscale molecular processes by harnessing electromagnetic coherence. Although recent experiments with liquid-phase vibrational polaritons have shown great promise for exploiting these effects, significant challenges remain in interpreting their spectroscopic signatures. In this letter, we develop a quantum-mechanical theory of pump-probe spectroscopy for this class of polaritons based on the quantum Langevin equations and the input-output theory. Comparison with recent experimental data shows good agreement upon consideration of the various vibrational anharmonicities that modulate the signals. Finally, a simple and intuitive interpretation of the data based on an effective mode-coupling theory is provided. Our work provides a solid theoretical framework to elucidate nonlinear optical properties of molecular polaritons as well as to analyze further multidimensional spectroscopy experiments on these systems

    Revealing Hidden Vibration Polariton Interactions by 2D IR Spectroscopy

    Full text link
    We report the first experimental two-dimensional infrared (2D IR) spectra of novel molecular photonic excitations - vibrational-polaritons. The application of advanced 2D IR spectroscopy onto novel vibrational-polariton challenges and advances our understanding in both fields. From spectroscopy aspect, 2D IR spectra of polaritons differ drastically from free uncoupled molecules; from vibrational-polariton aspects, 2D IR uniquely resolves hybrid light-matter polariton excitations and unexpected dark states in a state-selective manner and revealed hidden interactions between them. Moreover, 2D IR signals highlight the role of vibrational anharmonicities in generating non-linear signals. To further advance our knowledge on 2D IR of vibrational polaritons, we develop a new quantum-mechanical model incorporating the effects of both nuclear and electrical anharmonicities on vibrational-polaritons and their 2D IR signals. This work reveals polariton physics that is difficult or impossible to probe with traditional linear spectroscopy and lays the foundation for investigating new non-linear optics and chemistry of molecular vibrational-polaritons

    Reliable and accurate diagnostics from highly multiplexed sequencing assays

    Get PDF
    Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA

    Towards energetically viable asymmetric deprotonations : selectivity at more elevated temperatures with C2-symmetric magnesium bisamides

    Get PDF
    A novel chiral magnesium bisamide has enabled the development of effective asymmetric deprotonation protocols at substantially more elevated temperatures. This new, structurally simple, C2-symmetric magnesium complex displays excellent levels of asymmetric efficiency and energy reduction in the synthesis of enantioenriched enol silane
    corecore