58 research outputs found

    α7-Nicotinic Acetylcholine Receptor: Role in Early Odor Learning Preference in Mice

    Get PDF
    Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5–18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits

    Impaired attentional modulation of auditory evoked potentials in N-methyl-D-aspartate NR1 hypomorphic mice

    Full text link
    In human neurophysiology, auditory event-related potentials (AEPs) are used to investigate cognitive processes such as selective attention. Selective attention to specific tones causes a negative enhancement of AEPs known as processing negativity (PN), which is reduced in patients with schizophrenia. The evidence suggests that impaired selective attention in these patients may partially depend on deficient N-methyl-D-aspartate receptor (NMDAR)-mediated signaling. The goal of this study was to corroborate the involvement of the NMDAR in selective attention using a mouse model. To this end, we first investigated the presence of PN-like activity in C57BL/6J mice by recording AEPs during a fear-conditioning paradigm. Two alternating trains of tones, differing in stimulus duration, were presented on 7 subsequent days. One group received a mild foot shock delivered within the presentation of one train (conditioning train) on days 3-5 (conditioning days), while controls were never shocked. The fear-conditioned group (n= 9) indeed showed a PN-like activity during conditioning days manifested as a significant positive enhancement in the AEPs to the stimuli in the conditioning train that was not observed in the controls. The same paradigm was then applied to mice with reduced expression of the NMDAR1 (NR1) subunit and to a wild-type control group (each group n= 6). The NR1 mutants showed an associative AEP enhancement, but its magnitude was significantly reduced as compared with the magnitude in wild-type mice. We conclude that electrophysiological manifestations of selective attention are observable yet of different polarity in mice and that they require intact NMDAR-mediated signaling. Thus, deficient NMDAR functioning may contribute to abnormal selective attention in schizophrenia

    Functional Uncoupling of Adenosine A 2A Receptors and Reduced Response to Caffeine in Mice Lacking Dopamine D 2 Receptors

    Get PDF
    Dopamine D(2) receptors (Rs) and adenosine A(2A)Rs are coexpressed on striatopallidal neurons, where they mediate opposing actions. In agreement with the idea that D(2)Rs tonically inhibit GABA release from these neurons, stimulation-evoked GABA release was significantly greater from striatal/pallidal slices from D(2)R null mutant (D(2)R(-/-)) than from wild-type (D(2)R(+/+)) mice. Release from heterozygous (D(2)R(+/-)) slices was intermediate. However, contrary to predictions that A(2A)R effects would be enhanced in D(2)R-deficient mice, the A(2A)R agonist CGS 21680 significantly increased GABA release only from D(2)R(+/+) slices. CGS 21680 modulation was observed when D(2)Rs were antagonized by raclopride, suggesting that an acute absence of D(2)Rs cannot explain the results. The lack of CGS 21680 modulation in the D(2)R-deficient mice was also not caused by a compensatory downregulation of A(2A)Rs in the striatum or globus pallidus. However, CGS 21680 significantly stimulated cAMP production only in D(2)R(+/+) striatal/pallidal slices. This functional uncoupling of A(2A)Rs in the D(2)R-deficient mice was not explained by reduced expression of G(s), G(olf), or type VI adenylyl cyclase. Locomotor activity induced by the adenosine receptor antagonist caffeine was significantly less pronounced in D(2)R(-/-) mice than in D(2)R(+/+) and D(2)R(+/-) mice, further supporting the idea that D(2)Rs are required for caffeine activation. Caffeine increased c-fos only in D(2)R(-/-) globus pallidus. The present results show that a targeted disruption of the D(2)R reduces coupling of A(2A)Rs on striatopallidal neurons and thereby responses to drugs that act on adenosine receptors. They also reinforce the ideas that D(2)Rs and A(2A)Rs are functionally opposed and that D(2)R-mediated effects normally predominate.Fil: Zahniser, Nancy R.. University of Colorado; Estados UnidosFil: Simosky, Johanna K.. University of Colorado; Estados UnidosFil: Mayfield, R. Dayne. University of Colorado; Estados UnidosFil: Negri, Cori A.. University of Colorado; Estados UnidosFil: Hanania, Taleen. University of Colorado; Estados UnidosFil: Larson, Gaynor A.. University of Colorado; Estados UnidosFil: Kelly, Michele A.. University of Oregon; Estados UnidosFil: Grandy, David K.. University of Oregon; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Low, Malcolm J.. University of Oregon; Estados UnidosFil: Fredholm, Bertil B.. Karolinska Huddinge Hospital. Karolinska Institutet; Sueci
    • …
    corecore