18,904 research outputs found

    Green's functions for Sturm-Liouville problems

    Get PDF
    Green function for inhomogeneous Strum-Liouville differential equation proble

    Spatiospectral concentration of vector fields on a sphere

    Full text link
    We construct spherical vector bases that are bandlimited and spatially concentrated, or, alternatively, spacelimited and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of Slepian, Landau, and Pollak we concentrate the energy of our function bases into arbitrarily shaped regions of interest on the sphere, and within certain bandlimits in the vector spherical-harmonic domain. As with the concentration problem for scalar functions on the sphere, which has been treated in detail elsewhere, a Slepian vector basis can be constructed by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate problems for the radial and tangential components. For regions with advanced symmetry such as polar caps, the spectral concentration kernel matrix is very easily calculated and block-diagonal, lending itself to efficient diagonalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that only depends on the area of the target region and the maximal spherical-harmonic degree or bandwidth. The spherical Slepian vector basis is doubly orthogonal, both over the entire sphere and over the geographic target region. Like its scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields in optics, antenna theory and medical imaging.Comment: Submitted to Applied and Computational Harmonic Analysi

    A General Approach to Regularizing Inverse Problems with Regional Data using Slepian Wavelets

    Full text link
    Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth's surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples

    Internal and external potential-field estimation from regional vector data at varying satellite altitude

    Full text link
    When modeling global satellite data to recover a planetary magnetic or gravitational potential field and evaluate it elsewhere, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g., by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the planetary surface) while balancing the conflicting demands for spatial concentration and spectral limitation. Solving simultaneously for internal and external fields in the same setting of regional data availability reduces internal-field artifacts introduced by downward-continuing unmodeled external fields, as we show with numerical examples. The AC-GVSF are optimal linear combinations of vector spherical harmonics. Their construction is not altogether very computationally demanding when the concentration domains (the regions of spatial concentration) have circular symmetry, e.g., on spherical caps or rings - even when the spherical-harmonic bandwidth is large. Data inversion proceeds by solving for the expansion coefficients of truncated function sequences, by least-squares analysis in a reduced-dimensional space. Hence, our method brings high-resolution regional potential-field modeling from incomplete and noisy vector-valued satellite data within reach of contemporary desktop machines.Comment: Under revision for Geophys. J. Int. Supported by NASA grant NNX14AM29

    New results on q-positivity

    Get PDF
    In this paper we discuss symmetrically self-dual spaces, which are simply real vector spaces with a symmetric bilinear form. Certain subsets of the space will be called q-positive, where q is the quadratic form induced by the original bilinear form. The notion of q-positivity generalizes the classical notion of the monotonicity of a subset of a product of a Banach space and its dual. Maximal q-positivity then generalizes maximal monotonicity. We discuss concepts generalizing the representations of monotone sets by convex functions, as well as the number of maximally q-positive extensions of a q-positive set. We also discuss symmetrically self-dual Banach spaces, in which we add a Banach space structure, giving new characterizations of maximal q-positivity. The paper finishes with two new examples.Comment: 18 page
    • …
    corecore