6,270 research outputs found

    Structure of the lightest tin isotopes

    Full text link
    We link the structure of nuclei around 100^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50N=Z=50), to nucleon-nucleon (NNNN) and three-nucleon (NNNNNN) forces constrained by data of few-nucleon systems. Our results indicate that 100^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of 101^{101}Sn based on three-particle--two-hole excitations of 100^{100}Sn, and reproduce the small splitting between the lowest Jπ=7/2+J^\pi=7/2^+ and 5/2+5/2^+ states. Our results are consistent with the sparse available data.Comment: 8 pages, 4 figure

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,
,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,
,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case

    Ground-State Electromagnetic Moments of Calcium Isotopes

    Get PDF
    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the 43−51^{43-51}Ca isotopes. The ground state magnetic moments of 49,51^{49,51}Ca and quadrupole moments of 47,49,51^{47,49,51}Ca were measured for the first time, and the 51^{51}Ca ground state spin I=3/2I=3/2 was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the 40^{40}Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review

    Long-Term Exposure to an Invasive Fungal Pathogen Decreases Eptesicus fuscus Body Mass With Increasing Latitude

    Get PDF
    Abstract Invasive pathogens threaten wildlife health and biodiversity. Physiological responses of species highly susceptible to pathogen infections following invasion are well described. However, the responses of less susceptible species (relative to highly susceptible species) are not well known. Latitudinal gradients, which can influence body condition via Bergmann\u27s rule and/or reflect the time it takes for an introduced pathogen to spread geographically, add an additional layer for how mammalian species respond to pathogen exposure. Our goal was to understand how hosts less susceptible to pathogen infections respond to long‐term pathogen exposure across a broad latitudinal gradient. We examined changes in body mass throughout pathogen exposure time across the eastern United States (latitude ranging 30.5° N–44.8° N) in Eptesicus fuscus, a bat species classified as less susceptible to infection (relative to highly susceptible species) by the invasive fungal pathogen that causes white‐nose syndrome, Pseudogymnoascus destructans (Pd). Using 30 years of spring through fall adult capture records, we created linear mixed‐effects models for female and male bats to determine how mass or mass variation changed across the eastern United States from pre‐Pd invasion years through Pd invasion (0–1 years with Pd), epidemic (2–4 years with Pd), and established years (5+ years with Pd). By Pd establishment, all female and male bats decreased body mass with increasing latitude across a spatial threshold at 39.6° N. Differences in bat mass north and south of the spatial threshold progressively increased over Pd exposure time‐steps such that body mass was lower in northern latitudes compared to southern latitudes by Pd establishment. Results indicated that the progressive differences in E. fuscus body mass with latitude across the eastern United States are due to long‐term pathogen exposure; however, other environmental and ecological pressures may contribute to decreases in E. fuscus body mass with latitude and long‐term pathogen exposure. As pathogen introductions and emerging infectious diseases become more prevalent on the landscape, it is imperative that we understand how less susceptible species directly and indirectly respond to long‐term pathogen exposure in order to maintain population health in surviving species

    Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

    Full text link
    Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by six orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of 21Mg is in good agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure

    The heritability of HbA1c and fasting blood glucose in different measurement settings.

    Get PDF
    In an extended twin study we estimated the heritability of fasting HbA1c and blood glucose levels. Blood glucose was assessed in different settings (at home and in the clinic). We tested whether the genetic factors influencing fasting blood glucose levels overlapped with those influencing HbA1c and whether the same genetic factors were expressed across different settings. Fasting blood glucose was measured at home and during two visits to the clinic in 77 healthy families with same-sex twins and siblings, aged 20 to 45 years. HbA1c was measured during the first clinic visit. A 4-variate genetic structural equation model was used that estimated the heritability of each trait and the genetic correlations among traits. Heritability explained 75% of the variance in HbA1c. The heritability of fasting blood glucose was estimated at 66% at home and lower in the clinic (57% and 38%). Fasting blood glucose levels were significantly correlated across settings (0.34 < r < 0.54), mostly due to a common set of genes that explained between 53% and 95% of these correlations. Correlations between HbA1c and fasting blood glucoses were low (0.11 < r < 0.23) and genetic factors influencing HbA1c and fasting glucose were uncorrelated. These results suggest that in healthy adults the genes influencing HbA1c and fasting blood glucose reflect different aspects of the glucose metabolism. As a consequence these two glycemic parameters can not be used interchangeably in diagnostic procedures or in studies attempting to find genes for diabetes. Both contribute unique (genetic) information

    In vitro efficacy and safety of a system for sorbent-assisted peritoneal dialysis

    Get PDF
    In vitro efficacy and safety of a system for sorbent-assisted peritoneal dialysis. Am J Physiol Renal Physiol 319: F162-F170, 2020. First published June 1, 2020; doi:10.1152/ajprenal. 00079.2020.-A system for sorbent-assisted peritoneal dialysis (SAPD) was designed to continuously recirculate dialysate via a tidal mode using a single lumen peritoneal catheter with regeneration of spent dialysate by means of sorbent technology. We hypothesize that SAPD treatment will maintain a high plasma-to-dialysate concentration gradient and increase the mass transfer area coefficient of solutes. Thereby, the SAPD system may enhance clearance while reducing the number of exchanges. Application is envisaged at night as a bedside device (12 kg, nighttime system). A wearable system (2.0 kg, daytime system) may further enhance clearance during the day. Urea, creatinine, and phosphate removal were studied with the daytime and nighttime system (n = 3 per system) by recirculating 2 liters of spent peritoneal dialysate via a tidal mode (mean flow rate: 50 and 100 mL/min, respectively) for 8 h in vitro. Time-averaged plasma clearance over 24 h was modeled assuming one 2 liter exchange/day, an increase in mass transfer area coefficient, and 0.9 liters ultrafiltration/day. Urea, creatinine, and phosphate removal was 33.2 ± 4.1, 5.3 ± 0.5, and 6.2 ± 1.8 mmol, respectively, with the daytime system and 204 ± 28, 10.3 ± 2.4, and 11.4 ± 2.1 mmol, respectively, with the nighttime system. Time-averaged plasma clearances of urea, creatinine and phosphate were 9.6 ± 1.1, 9.6 ± 1.7, and 7.0 ± 0.9 mL/min, respectively, with the nighttime system and 10.8 ± 1.1, 13.4 ± 1.8, and 9.7 ± 1.6 mL/min, respectively, with the daytime and nighttime system. SAPD treatment may improve removal of uremic toxins compared with conventional peritoneal dialysis, provided that peritoneal mass transport will increase

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material
    • 

    corecore