Most materials in available macroscopic quantities are polycrystalline.
Graphene, a recently discovered two-dimensional form of carbon with strong
potential for replacing silicon in future electronics, is no exception. There
is growing evidence of the polycrystalline nature of graphene samples obtained
using various techniques. Grain boundaries, intrinsic topological defects of
polycrystalline materials, are expected to dramatically alter the electronic
transport in graphene. Here, we develop a theory of charge carrier transmission
through grain boundaries composed of a periodic array of dislocations in
graphene based on the momentum conservation principle. Depending on the grain
boundary structure we find two distinct transport behaviours - either high
transparency, or perfect reflection of charge carriers over remarkably large
energy ranges. First-principles quantum transport calculations are used to
verify and further investigate this striking behaviour. Our study sheds light
on the transport properties of large-area graphene samples. Furthermore,
purposeful engineering of periodic grain boundaries with tunable transport gaps
would allow for controlling charge currents without the need of introducing
bulk band gaps in otherwise semimetallic graphene. The proposed approach can be
regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material