874 research outputs found

    Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    Full text link
    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine

    The Tegument of the Human Parasitic Worm Schistosoma mansoni as an Excretory Organ: The Surface Aquaporin SmAQP Is a Lactate Transporter

    Get PDF
    Adult schistosomes are intravascular parasites that metabolize imported glucose largely via glycolysis. How the parasites get rid of the large amounts of lactic acid this generates is unknown at the molecular level. Here, we report that worms whose aquaporin gene (SmAQP) has been suppressed using RNAi fail to rapidly acidify their culture medium and excrete less lactate compared to controls. Functional expression of SmAQP in Xenopus oocytes demonstrates that this protein can transport lactate following Michaelis-Menten kinetics with low apparent affinity (Km = 41±5. 8 mM) and with a low energy of activation (Ea = 7.18±0.7 kcal/mol). Phloretin, a known inhibitor of lactate release from schistosomes, also inhibits lactate movement in SmAQP-expressing oocytes. In keeping with the substrate promiscuity of other aquaporins, SmAQP is shown here to be also capable of transporting water, mannitol, fructose and alanine but not glucose. Using immunofluorescent and immuno-EM, we confirm that SmAQP is localized in the tegument of adult worms. These findings extend the proposed functions of the schistosome tegument beyond its known capacity as an organ of nutrient uptake to include a role in metabolic waste excretion

    Продукты химической переработки окисленных углей

    Get PDF
    Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis(1,2). Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter

    Dysfunctional LAT2 amino acid transporter is associated with cataract in mouse and humans

    Get PDF
    Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 (Slc7a8) and uniporter TAT1 (Slc16a10) are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect. Interestingly, the absence of LAT2 led to increased incidence of cataract in mice, in particular in older females, and a synergistic effect was observed with simultaneous lack of TAT1. Screening SLC7A8 in patients diagnosed with congenital or age-related cataract yielded one homozygous single nucleotide deletion segregating in a family with congenital cataract. Expressed in HeLa cells, this LAT2 mutation did not support amino acid uptake. Heterozygous LAT2 variants were also found in patients with cataract some of which showed a reduced transport function when expressed in HeLa cells. Whether heterozygous LAT2 variants may contribute to the pathology of cataract needs to be further investigated. Overall, our results suggest that defects of amino acid transporter LAT2 are implicated in cataract formation, a situation that may be aggravated by TAT1 defects

    COVID-19 clinical phenotypes in vaccinated and nonvaccinated solid organ transplant recipients: a multicenter validation study

    Get PDF
    : Clinical phenotypes of COVID-19, associated with mortality risk, have been identified in the general population. The present study assesses their applicability in solid organ transplant recipients (SOTR) hospital-admitted by COVID-19. In a cohort of 488 SOTR, nonvaccinated (n = 394) and vaccinated (n = 94) against SARS-CoV-2, we evaluated 16 demographic, clinical, analytical, and radiological variables to identify the clinical phenotypes A, B, and C. The median age was 61.0 (51-69) years, 330 (67.6%) and 158 (32.4%) were men and women, respectively, 415 (85%) had pneumonia, and 161 (33%) had SpO2 < 95% at admission. All-cause mortality occurred in 105 (21.5%) cases. It was higher in nonvaccinated versus vaccinated SOTR (23.4% vs 13.8%, P = 0.04). Patients in the entire cohort were classified into phenotypes A (n = 149, 30.5%), B (n = 187, 38.3%), and C (n = 152, 31.1%), with mortality rates of 8.7%, 16.6%, and 40.1%, respectively, which were similar to those of nonvaccinated SOTR (9.5%, 16.7%, and 52.0%) and lower in vaccinated SOTR (4.4%, 15.8%, and 17.3%, respectively), with difference between nonvaccinated and vaccinated in the phenotype C (P < 0.001). In conclusion, COVID-19 clinical phenotypes are useful in SOTR, and all-cause mortality decreases in vaccinated patients

    Skin color and severe maternal outcomes: evidence from the brazilian network for surveillance of severe maternal morbidity

    Get PDF
    Taking into account the probable role that race/skin color may have for determining outcomes in maternal health, the objective of this study was to assess whether maternal race/skin color is a predictor of severe maternal morbidity. This is a secondary analysis of the Brazilian Network for Surveillance of Severe Maternal Morbidity, a national multicenter cross-sectional study of 27 Brazilian referral maternity hospitals. A prospective surveillance was performed to identify cases of maternal death (MD), maternal near miss (MNM) events, and potentially life-threatening conditions (PLTC), according to standard WHO definition and criteria. Among 9,555 women with severe maternal morbidity, data on race/skin color was available for 7,139 women, who were further divided into two groups: 4,108 nonwhite women (2,253 black and 1,855 from other races/skin color) and 3,031 white women. Indicators of severe maternal morbidity according to WHO definition are shown by skin color group. Adjusted Prevalence Ratios (PRadj - 95%CI) for Severe Maternal Outcome (SMO=MNM+MD) were estimated according to sociodemographic/obstetric characteristics, pregnancy outcomes, and perinatal results considering race. Results. Among 7,139 women with severe maternal morbidity evaluated, 90.5% were classified as PLTC, 8.5% as MNM, and 1.6% as MD. There was a significantly higher prevalence of MNM and MD among white women. MNMR (maternal near miss ratio) was 9.37 per thousand live births (LB). SMOR (severe maternal outcome ratio) was 11.08 per 1000 LB, and MMR (maternal mortality ratio) was 170.4 per 100,000 LB. Maternal mortality to maternal near miss ratio was 1 to 5.2, irrespective of maternal skin color. Hypertension, the main cause of maternal complications, affected mostly nonwhite women. Hemorrhage, the second more common cause of maternal complication, predominated among white women. Nonwhite skin color was associated with a reduced risk of SMO in multivariate analysis. Nonwhite skin color was associated with a lower risk for severe maternal outcomes. This result could be due to confounding factors linked to a high rate of Brazilian miscegenation.2019CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológico402702/2008-

    Tropical forests in the Americas are changing too slowly to track climate change

    Get PDF
    Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change
    corecore