143 research outputs found

    indagine sulla rugosità superficiale per l'elaborazione di metodi matematici per la previsione dello scuffing

    Get PDF
    La prima fase è consistita nella rilevazione della topografia superficiale,mediante prove al rugosimetro, di determinati provini. Successivamente, i dati provenienti dal rugosimetro sono stati inseriti in un programma, sviluppato in ambiente Matlab e opportunamente modificato, atto a simulare il comportamento delle asperità superficiali nel caso di contatto tra due corpi. A partire dai dati numerici, ricavabili dalle simulazioni è stato possibile implementare una procedura che consentisse di determinare la temperatura nella zona di contatto, quindi la probabilità di innesco dello scuffing per superfici a diversa rugosità

    Comparative analysis of local angular rotation between the Ring Laser Gyroscope GINGERINO and GNSS stations

    Full text link
    The study of local deformations is a hot topic in geodesy. Local rotations of the crust around the vertical axis can be caused by deformations. In the Gran Sasso area the ring laser prototype GINGERINO and the GNSS array are operative. One year of data of GINGERINO is compared with the ones from the GNSS stations, homogeneously selected around the position of GINGERINO, aiming at looking for rotational signals with period of days common to both systems. At that purpose the rotational component of the area circumscribed by the GNSS stations has been evaluated and compared with the GINGERINO data. The coherences between the signals show structures that even exceed 60%\% coherence over the 6-60 days period; to validate this unprecedented analysis two different methods have been used to evaluate the local rotation using the GNSS stations. The analysis reveals that the shared rotational signal's amplitude in both instruments is approximately 1013rad/s10^{-13} rad/s, an order of magnitude lower than the amplitudes of the signals examined using the coherence method. The ring laser array GINGER is at present under construction, and the confrontation of the ring laser data with GNSS antennas provides evidence of the fruibility and validity of the ring laser data for very low frequency investigation

    Prognostic value of serial (1,3)-β-d-glucan measurements in ICU patients with invasive candidiasis

    Get PDF
    Background To determine whether a decrease in serum (1,3)-beta-d-glucan (BDG) was associated with reduced mortality and to investigate the performance of BDG downslope in predicting clinical outcome in invasive candidiasis. Methods Observational cohort study in ICU patients over a ten-year period (2012-2022) in Italy. Proven invasive candidiasis with at least 2 BDG determinations were considered. Results In the study population of 103 patients (age 47 [35-62] years, SAPS II score 67 [52-77]) 68 bloodstream and 35 intrabdominal infections were recorded. Serial measurements showed that in 54 patients BDG decreased over time (BDG downslope group) while in 49 did not (N-BDG downslope group). Candida albicans was the pathogen most frequently isolated (61%) followed by C. parapsilosis (17%) and C. glabrata (12%), in absence of any inter-group difference. Invasive candidiasis related mortality was lower in BDG downslope than in N-BDG downslope group (17% vs 53%, p < 0.01). The multivariate Cox regression analysis showed the association of septic shock at infection occurrence and chronic liver disease with invasive candidiasis mortality (HR [95% CI] 3.24 [1.25-8.44] p = 0.02 and 7.27 [2.33-22.66] p < 0.01, respectively) while a BDG downslope was the only predictor of survival (HR [95% CI] 0.19 [0.09-0.43] p < 0.01). The area under the receiver operator characteristic curve for the performance of BDG downslope as predictor of good clinical outcome was 0.74 (p = 0.02) and our model showed that a BDG downslope > 70% predicted survival with both specificity and positive predictive value of 100%. Conclusions A decrease in serum BDG was associated with reduced mortality and a steep downslope predicted survival with high specificity in invasive candidiasis

    Pharmacological Inhibition of Necroptosis Protects from Dopaminergic Neuronal Cell Death in Parkinson's Disease Models

    Get PDF
    Dysfunctions in mitochondrial dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). It was recently shown that an inherited form of PD and dementia is caused by mutations in the OPA1 gene, which encodes for a key player in mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits, and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1-mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP-treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a potential therapeutic target for PD. Iannielli et al. generate iPSCs from Parkinson's disease patients with OPA1 mutations and find that derived NPCs have mitochondria with impaired morphology and bioenergetics. Nec-1s, a pharmacological inhibitor of necroptosis, promotes the survival of human OPA1 mutant neurons and attenuates dopaminergic neuronal loss in MPTP-treated mice

    Semiology and determinants of apathy across neurodegenerative motor disorders: A comparison between amyotrophic lateral sclerosis, Parkinson's and Huntington's disease

    Get PDF
    Background: The semiology and determinants of apathy are largely unknown across amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s disease (HD), due to both motor and non-motor confounders. This study thus aimed at (1) profiling apathy in ALS, PD, and HD and (2) exploring its clinical determinants. Materials: Consecutive ALS (N = 99), PD (N = 73), and HD (N = 25) patients underwent a motor-free assessment of apathy (Dimensional Apathy Scale, DAS), global cognition, anxiety and depression. Function was assessed through disease-specific scales. The DAS was also completed by N = 101 healthy controls (HCs). Between-group comparisons on DAS scores were implemented by covarying for all applicable confounders. Predictive models on DAS scores were built through multiple, stepwise regressions. Results: Parkinson’s disease and HD, but not ALS, patients were more apathetic than HCs—with HD patients also selectively showing lower initiation and poorer goal-directed planning than HCs. Higher apathetic features were detected in PD and HD as compared to ALS. Education was a protective factor against apathy in ALS. Anxiety was a risk factor for global apathy in ALS, HD, and to a lesser extent, in PD, whereas, protective only toward affective disintegration in PD and ALS. Cognitive inefficiency was a risk factor toward apathy in both PD and ALS. Depression was a risk factor for executive-related apathy in PD. Discussion: This study provides unprecedented insights into the heterogeneous semiology and determinants of apathy across ALS, PD, and HD via the DAS, in turn informing clinical practice and research

    Use of High-Dose Nebulized Colistimethate in Patients with Colistin-Only Susceptible Acinetobacter baumannii VAP: Clinical, Pharmacokinetic and Microbiome Features

    Get PDF
    (1) Background: Colistin-only susceptible (COS) Acinetobacter baumannii (AB) ventilator-associated pneumonia (VAP) represents a clinical challenge in the Intensive Care Unit (ICU) due to the negligible lung diffusion of this molecule and the low-grade evidence on efficacy of its nebulization. (2) Methods: We conducted a prospective observational study on 134 ICU patients with COS-AB VAP to describe the 'real life' clinical use of high-dose (5 MIU q8) aerosolized colistin, using a vibrating mesh nebulizer. Lung pharmacokinetics and microbiome features were investigated. (3) Results: Patients were enrolled during the COVID-19 pandemic with the ICU presenting a SAPS II of 42 [32-57]. At VAP diagnosis, the median PaO2/FiO(2) was 120 [100-164], 40.3% were in septic shock, and 24.6% had secondary bacteremia. The twenty-eight day mortality was 50.7% with 60.4% and 40.3% rates of clinical cure and microbiological eradication, respectively. We did not observe any drug-related adverse events. Epithelial lining fluid colistin concentrations were far above the CRAB minimal-inhibitory concentration and the duration of nebulized therapy was an independent predictor of microbiological eradication (12 [9.75-14] vs. 7 [4-13] days, OR (95% CI): 1.069 (1.003-1.138), p = 0.039). (4) Conclusions: High-dose and prolonged colistin nebulization, using a vibrating mesh, was a safe adjunctive therapeutic strategy for COS-AB VAP. Its right place and efficacy in this setting warrant investigation in interventional studies

    An Observational Study to Develop a Predictive Model for Bacterial Pneumonia Diagnosis in Severe COVID-19 Patients-C19-PNEUMOSCORE

    Get PDF
    In COVID-19 patients, antibiotics overuse is still an issue. A predictive scoring model for the diagnosis of bacterial pneumonia at intensive care unit (ICU) admission would be a useful stewardship tool. We performed a multicenter observational study including 331 COVID-19 patients requiring invasive mechanical ventilation at ICU admission; 179 patients with bacterial pneumonia; and 152 displaying negative lower-respiratory samplings. A multivariable logistic regression model was built to identify predictors of pulmonary co-infections, and a composite risk score was developed using β-coefficients. We identified seven variables as predictors of bacterial pneumonia: vaccination status (OR 7.01; 95% CI, 1.73-28.39); chronic kidney disease (OR 3.16; 95% CI, 1.15-8.71); pre-ICU hospital length of stay ≥ 5 days (OR 1.94; 95% CI, 1.11-3.4); neutrophils ≥ 9.41 × 1

    Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome

    Get PDF
    Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria

    Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy

    GINGER

    Full text link
    In this paper, we outline the scientific objectives, the experimental layout, and the collaborations envisaged for the GINGER (Gyroscopes IN GEneral Relativity) project. The GINGER project brings together different scientific disciplines aiming at building an array of Ring Laser Gyroscopes (RLGs), exploiting the Sagnac effect, to measure continuously, with sensitivity better than picorad/ s, large bandwidth (ca. 1 kHz), and high dynamic range, the absolute angular rotation rate of the Earth. In the paper, we address the feasibility of the apparatus with respect to the ambitious specifications above, as well as prove how such an apparatus, which will be able to detect strong Earthquakes, very weak geodetic signals, as well as general relativity effects like Lense-Thirring and De Sitter, will help scientific advancements in Theoretical Physics, Geophysics, and Geodesy, among other scientific fields.Comment: 21 pages, 9 figure
    corecore