Comparative analysis of local angular rotation between the Ring Laser Gyroscope GINGERINO and GNSS stations

Abstract

The study of local deformations is a hot topic in geodesy. Local rotations of the crust around the vertical axis can be caused by deformations. In the Gran Sasso area the ring laser prototype GINGERINO and the GNSS array are operative. One year of data of GINGERINO is compared with the ones from the GNSS stations, homogeneously selected around the position of GINGERINO, aiming at looking for rotational signals with period of days common to both systems. At that purpose the rotational component of the area circumscribed by the GNSS stations has been evaluated and compared with the GINGERINO data. The coherences between the signals show structures that even exceed 60%\% coherence over the 6-60 days period; to validate this unprecedented analysis two different methods have been used to evaluate the local rotation using the GNSS stations. The analysis reveals that the shared rotational signal's amplitude in both instruments is approximately 1013rad/s10^{-13} rad/s, an order of magnitude lower than the amplitudes of the signals examined using the coherence method. The ring laser array GINGER is at present under construction, and the confrontation of the ring laser data with GNSS antennas provides evidence of the fruibility and validity of the ring laser data for very low frequency investigation

    Similar works

    Full text

    thumbnail-image

    Available Versions