19 research outputs found
Mediterranean monitoring and forecasting operational system for Copernicus Marine Service
The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission.
Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the
pre-operational system developed during the MyOcean projects, consolidating the understanding of regional
Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection
networks and guaranteeing an efficient link with other Centers in Copernicus network.
The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature,
salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in
2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the
Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages
the service delivery.
The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a
unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components,
guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products.
The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical
and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in
the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily
precipitation; reanalysis time-series have been increased by one year.
Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon
system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface).
Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.PublishedVienna3SR. AMBIENTE - Servizi e ricerca per la Societ
Kinetic modelling of photomineralization of phenol, as model molecule of aromatic micropollutants, and validation of a photochemical reactor based on photocatalytic membranes immobilizing titanium dioxide and promoting photocatalysts
In the present work, a validation study was carried out in a pre-industrial pilot plant equipped with 9 photocatalytic membrane modules and capable to treat 350-400 L per day. Aq. solns. contg. 4-1,000 pm of phenol, expressed as total org. carbon (TOC), were treated in the plant, and followed kinetically for TOC decrease, as well as for decrease of concn. of substrate, as a function of time, by varying only the kind of oxygen donor (stoichiometric H2O2 or O3) and concn. of a synergic mixt. of tri-(t-butyl)- and tri- (i-propyl) vanadate (V) as photopromoter (added to the membrane during its manuf.). All other parameters of the plant have been optimized in preceding studies. Kinetic modeling was carried out as described in preceding papers of this series. The system of 3 equations and 4 unknown parameters (the "true" k and K couples for substrate and intermediate) was thus solved by successive steps. The final result was a graphical output of curves of substrate, intermediate and carbon dioxide concns., as a function of time, all expressed in terms of carbon content, fitting the exptl. data very satisfactorily. The photocatalytic activity of trialkyl vanadates was evaluated from quantum yields at "infinite" concn., as a function of concn. of photopromoter in the membrane. When using O3, at about 7 wt.% of photopromoter, a more than five-fold quantum yield was obtained. This behavior is discussed on the basis of scavenging of conduction band electrons, by producing
7O2H/
7O2- radical species, as well as by dark catalysis and/or photolysis of O3 adsorbed on the TiO2-photopromoter system
Anti CD38 monoclonal antibodies for multiple myeloma treatment
: CD38 is a transmembrane glycoprotein with ectoenzymatic activity and is highly and uniformly expressed on multiple myeloma (MM) cells. CD38 is expressed also at relatively low levels on normal lymphoid and myeloid cells, and in some tissues of non-hematopoietic origin. The specificity of this target has increased interest in new drugs and triggered the development of the CD38 monoclonal antibodies Daratumumab (fully human) and Isatuximab (chimeric). CD38 antibodies have pleiotropic mechanisms of action including Fc-dependent immune effector mechanisms, direct apoptotic activity, and immunomodulatory effects by the elimination of CD38+ immune-suppressor cells. Monoclonal antibody-based therapy has revolutionized MM therapy in the latest years increasing depth of response. This product review will focus on anti-CD38 monoclonal antibodies Daratumumab and Isatuximab efficacy, safety, pharmacokinetic and pharmacodynamic data from clinical trials
Histopathology of intestinal villi in neonatal and paediatric age: main features with clinical correlation - Part II
: In this paper, we will continue the description of histological findings of infantile and paediatric small bowel alterations with the main clinical pictures and differential diagnosis. We emphasise once again the need to evaluate the biopsies in an adequate clinical contest and with a systematic approach, including epithelial alterations, lamina propria changes, mucosal architecture, and the distribution of inflammation, together with other morphological signs more specific of certain diseases. We describe the histological findings of coeliac and Crohn's disease, gastrointestinal food allergic diseases, Langerhans cell histiocytosis, nutritional deficiencies and infections. Finally, we suggest the principal issues in the drafting the pathological report for appropriate interpretation and usefulness in clinical practice
Histopathology of intestinal villi in neonatal and paediatric age: main features with clinical correlation - Part I
none8: The neonatal and paediatric spectrum of small bowel disorders encompass a wide variety of conditions, ranging from food allergies to life-threatening surgical emergencies or lifelong medical conditions and, as such, it comes with a whole set of diagnostic challenges for the non-paediatric pathologist. Histologic examination is a cornerstone of diagnosis in a large number of diseases and may still provide important diagnostic clues in the appropriate clinical context. In this review, divided in two sections, we aim to provide a comprehensive histopathological summary of paediatric small bowel alteration and their differential diagnoses with a reference to the main clinical aspects required for appropriate interpretation. Specifically, in this first part, we describe congenital and metabolic disorders, intestinal lymphangiectasia, immunodeficiencies, GVHD, and necrotising enterocolitis.noneRossi, Chiara; Simoncelli, Gloria; Arpa, Giovanni; Stracuzzi, Alessandra; Parente, Paola; Fassan, Matteo; Vanoli, Alessandro; Villanacci, VincenzoRossi, Chiara; Simoncelli, Gloria; Arpa, Giovanni; Stracuzzi, Alessandra; Parente, Paola; Fassan, Matteo; Vanoli, Alessandro; Villanacci, Vincenz
Leptin system is not affected by different diets in the abomasum of the sheep reared in semi-natural pastures of the Central Apennines
: The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production
Mediterranean monitoring and forecasting operational system for Copernicus Marine Service
The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea
Fate of melatonin orally administered in preterm newborns: Antioxidant performance and basis for neuroprotection
Preterm infants cannot counteract excessive reactive oxygen species (ROS) production due to preterm birth, leading to an excess of lipid peroxidation with malondialdehyde (MDA) production, capable of contributing to brain damage. Melatonin (ME), an endogenous brain hormone, and its metabolites, act as a free radical scavenger against ROS. Unfortunately, preterms have an impaired antioxidant system, resulting in the inability to produce and release ME. This prospective, multicenter, parallel groups, randomized, double-blind, placebo-controlled trial aimed to assess: (i) the endogenous production of ME in very preterm infants (gestational age <= 29 + 6 WE, 28 infants in the ME and 26 in the placebo group); (ii) the exogenous hormone availability and its metabolization to the main metabolite, 6-OH-ME after 15 days of ME oral treatment; (iii) difference of MDA plasma concentration, as peroxidation marker, after treatment. Blood was collected before the first administration (T1) and after 15 days of administration (T2). ME and 6-OH-ME were detected by liquid chromatography tandem mass spectrometry, MDA was measured by liquid chromatograph with fluorescence detection. ME and 6-OH-ME were not detectable in the placebo group at any study time-point. ME was absent in the active group at T1. In contrast, after oral administration, ME and 6-OH-ME resulted highly detectable and the difference between concentrations T2 versus T1 was statistically significant, as well as the difference between treated and placebo groups at T2. MDA levels seemed stable during the 15 days of treatment in both groups. Nevertheless, a trend in the percentage of neonates with reduced MDA concentration at T2/T1 was 48.1% in the ME group versus 38.5% in the placebo group. We demonstrated that very preterm infants are not able to produce endogenous detectable plasma levels of ME during their first days of life. Still, following ME oral administration, appreciable amounts of ME and 6-OH-ME were available. The trend of MDA reduction in the active group requires further clinical trials to fix the dosage, the length of ME therapy and to identify more appropriate indexes to demonstrate, at biological and clinical levels, the antioxidant activity and consequent neuroprotectant potential of ME in very preterm newborns