68 research outputs found

    Assessing the water balance of the Upper Rhine Graben hydrosystem

    No full text
    International audienceThe Upper Rhine alluvial aquifer is an important transboundary water resource. However, as in many alluvial systems, the aquifer inflows and outflows are not precisely known because of the difficulty of estimating the river infiltration flux and the boundary subsurface flow. To provide a thorough representation of the aquifer system, a coupled surface-subsurface model was applied to the whole aquifer basin, and several parameter sets were tested to investigate the uncertainty due to poorly known parameters (e.g. aquifer transmissivity computed by an inverse model, river bed characteristics). Twelve simulations were run and analyzed using standard statistical criteria and also a more advanced statistical method, the Karhunen LoÚve transform (KLT). This analysis showed that, although the model performed reasonably well, some piezometric level underestimations persisted in the south of the basin. An accurate representation of the aquifer behaviour would require river infiltration and the functioning of irrigation canals in the Hardt area to be taken into account. It also appeared that increasing the maximum river infiltration flow deteriorated the quality of the results. River infiltration to the aquifer was estimated to represent about 80% of the aquifer inflows with a mean annual value around 115 ± 16.5 m3/s, thus with an uncertainty of 14%. This quantity is larger than estimated in previous studies but is in agreement with some results obtained during low water periods. This important conclusion highlights the vulnerability of the Upper Rhine Graben aquifer to pollution from the rivers and to climate change since it is highly probable that the rivers' regimes will be affected by reduced snow cover on the neighbouring mountain ranges

    A modular program to solve combinatorial games : application to Sprouts and Cram

    No full text
    Nous cherchons dans cette thĂšse Ă  calculer les stratĂ©gies gagnantes de jeux combinatoires avec un programme informatique. Nous montrons comment les dĂ©coupages qui apparaissent au sein de certains jeux impartiaux peuvent ĂȘtre utilisĂ©s pour accĂ©lĂ©rer les calculs. Nous dĂ©taillons en particulier l'utilisation du concept d'arbre canonique rĂ©duit dans les calculs en version misĂšre. Ces mĂ©thodes ont Ă©tĂ© appliquĂ©es avec succĂšs au calcul de deux jeux impartiaux en apparence trĂšs diffĂ©rents : le Sprouts, oĂč les joueurs relient des points par des lignes, et le Cram, qui consiste Ă  remplir un plateau avec des dominos. Nous exposons ensuite une mĂ©thode originale de suivi des calculs de jeux, avec des interactions en temps rĂ©el par l'opĂ©rateur humain. Enfin, nous dĂ©crivons l'architecture du programme modulaire qui nous a permis de rĂ©aliser de nombreux calculs diffĂ©rents au sein d'un cadre commun, et qui pourrait ĂȘtre Ă©tendu Ă  l'avenir Ă  d'autres jeux ou algorithmes.The goal of this thesis is to compute the winning strategies of combinatorial games. We show how to accelerate the computation of impartial games when some positions can be splitted into sums of independent components. We detail in particular the concept of reduced canonical tree in misere computations. We have applied these algorithms successfully to the game of Sprouts, where two players draw lines between spots, and the game of Cram, where the players fill a grid with dominoes. Then, we present an innovative method for monitoring the computation and allowing the human operator to interact in real-time. We also describe the architecture of the modular program that allowed us to compute a lot of different results in a single framework

    Programme modulaire pour la résolution des jeux combinatoires : application au Sprouts et au Cram

    No full text
    The goal of this thesis is to compute the winning strategies of combinatorial games. We show how to accelerate the computation of impartial games when some positions can be splitted into sums of independent components. We detail in particular the concept of reduced canonical tree in misere computations. We have applied these algorithms successfully to the game of Sprouts, where two players draw lines between spots, and the game of Cram, where the players fill a grid with dominoes. Then, we present an innovative method for monitoring the computation and allowing the human operator to interact in real-time. We also describe the architecture of the modular program that allowed us to compute a lot of different results in a single framework.Nous cherchons dans cette thĂšse Ă  calculer les stratĂ©gies gagnantes de jeux combinatoires avec un programme informatique. Nous montrons comment les dĂ©coupages qui apparaissent au sein de certains jeux impartiaux peuvent ĂȘtre utilisĂ©s pour accĂ©lĂ©rer les calculs. Nous dĂ©taillons en particulier l'utilisation du concept d'arbre canonique rĂ©duit dans les calculs en version misĂšre. Ces mĂ©thodes ont Ă©tĂ© appliquĂ©es avec succĂšs au calcul de deux jeux impartiaux en apparence trĂšs diffĂ©rents : le Sprouts, oĂč les joueurs relient des points par des lignes, et le Cram, qui consiste Ă  remplir un plateau avec des dominos. Nous exposons ensuite une mĂ©thode originale de suivi des calculs de jeux, avec des interactions en temps rĂ©el par l'opĂ©rateur humain. Enfin, nous dĂ©crivons l'architecture du programme modulaire qui nous a permis de rĂ©aliser de nombreux calculs diffĂ©rents au sein d'un cadre commun, et qui pourrait ĂȘtre Ă©tendu Ă  l'avenir Ă  d'autres jeux ou algorithmes

    Programme modulaire pour la résolution des jeux combinatoires : application au Sprouts et au Cram

    No full text
    The goal of this thesis is to compute the winning strategies of combinatorial games. We show how to accelerate the computation of impartial games when some positions can be splitted into sums of independent components. We detail in particular the concept of reduced canonical tree in misere computations. We have applied these algorithms successfully to the game of Sprouts, where two players draw lines between spots, and the game of Cram, where the players fill a grid with dominoes. Then, we present an innovative method for monitoring the computation and allowing the human operator to interact in real-time. We also describe the architecture of the modular program that allowed us to compute a lot of different results in a single framework.Nous cherchons dans cette thĂšse Ă  calculer les stratĂ©gies gagnantes de jeux combinatoires avec un programme informatique. Nous montrons comment les dĂ©coupages qui apparaissent au sein de certains jeux impartiaux peuvent ĂȘtre utilisĂ©s pour accĂ©lĂ©rer les calculs. Nous dĂ©taillons en particulier l'utilisation du concept d'arbre canonique rĂ©duit dans les calculs en version misĂšre. Ces mĂ©thodes ont Ă©tĂ© appliquĂ©es avec succĂšs au calcul de deux jeux impartiaux en apparence trĂšs diffĂ©rents : le Sprouts, oĂč les joueurs relient des points par des lignes, et le Cram, qui consiste Ă  remplir un plateau avec des dominos. Nous exposons ensuite une mĂ©thode originale de suivi des calculs de jeux, avec des interactions en temps rĂ©el par l'opĂ©rateur humain. Enfin, nous dĂ©crivons l'architecture du programme modulaire qui nous a permis de rĂ©aliser de nombreux calculs diffĂ©rents au sein d'un cadre commun, et qui pourrait ĂȘtre Ă©tendu Ă  l'avenir Ă  d'autres jeux ou algorithmes

    La clef de descellement (une évolution des techniques de dépose des superstructures en prothÚse fixée)

    No full text
    LYON1-BU Santé Odontologie (693882213) / SudocSudocFranceF

    Nimbers are inevitable

    Get PDF
    International audienceThis article concerns the resolution of impartial combinatorial games, in particular games that can be split in sums of independent positions. We prove that in order to compute the outcome of a sum of independent positions, it is always more efficient to compute separately the nimber of at least one of the independent positions, rather than to develop directly the game tree of the sum. The concept of the nimber is therefore inevitable to accelerate the computation of impartial games, even when we only try to determine the winning or losing outcome of a starting position. We also describe algorithms to use nimbers efficiently and to conclude, we give a review of the results obtained on two impartial games: Sprouts and Cram

    Production of Various Strategies and Position Control for Monte-Carlo Go- Entertaining human players

    Get PDF
    Abstract—Thanks to the continued development of tree search algorithms, of more precise evaluation functions, and of faster hardware, computer Go and computer Shogi have now reached a level of strength sufficient for most amateur players. However, the research about entertaining and coaching human players of board games is still very limited. In this paper, we try first to define what are the requirements for entertaining human players in computer board games. Then, we describe the different approaches that we have experimented in the case of Monte-Carlo computer Go. I

    Programme modulaire pour la résolution des jeux combinatoires (application au Sprouts et au Cram)

    No full text
    Nous cherchons dans cette thĂšse Ă  calculer les stratĂ©gies gagnantes de jeux combinatoires avec un programme informatique. Nous montrons comment les dĂ©coupages qui apparaissent au sein de certains jeux impartiaux peuvent ĂȘtre utilisĂ©s pour accĂ©lĂ©rer les calculs. Nous dĂ©taillons en particulier l'utilisation du concept d'arbre canonique rĂ©duit dans les calculs en version misĂšre. Ces mĂ©thodes ont Ă©tĂ© appliquĂ©es avec succĂšs au calcul de deux jeux impartiaux en apparence trĂšs diffĂ©rents : le Sprouts, oĂč les joueurs relient des points par des lignes, et le Cram, qui consiste Ă  remplir un plateau avec des dominos. Nous exposons ensuite une mĂ©thode originale de suivi des calculs de jeux, avec des interactions en temps rĂ©el par l'opĂ©rateur humain. Enfin, nous dĂ©crivons l'architecture du programme modulaire qui nous a permis de rĂ©aliser de nombreux calculs diffĂ©rents au sein d'un cadre commun, et qui pourrait ĂȘtre Ă©tendu Ă  l'avenir Ă  d'autres jeux ou algorithmes.The goal of this thesis is to compute the winning strategies of combinatorial games. We show how to accelerate the computation of impartial games when some positions can be splitted into sums of independent components. We detail in particular the concept of reduced canonical tree in misere computations. We have applied these algorithms successfully to the game of Sprouts, where two players draw lines between spots, and the game of Cram, where the players fill a grid with dominoes. Then, we present an innovative method for monitoring the computation and allowing the human operator to interact in real-time. We also describe the architecture of the modular program that allowed us to compute a lot of different results in a single framework.LILLE1-Bib. Electronique (590099901) / SudocSudocFranceF
    • 

    corecore