20 research outputs found

    Hydroclimatic changes in the British Isles through the Last-Glacial-Interglacial Transition:Multiproxy reconstructions from the Vale of Pickering, NE England

    Get PDF
    European paleoenvironmental records through the Last Glacial-Interglacial Transition (LGIT; ca 16-8 cal ka BP) record a series of climatic events occurring over decadal to multi-centennial timescales. Changes in components of the climatic system other than temperature (e.g. hydrology) through the LGIT are relatively poorly understood however, and further records of hydroclimatic changes are required in order to develop a more complete understanding on the phasing of environmental and anthropogenic responses in Europe to abrupt climate change. Here, we present a multiproxy palaeoenvironmental record (macroscale and microscale sedimentology, macrofossils, and carbonate stable isotopes) from a palaeolake sequence in the Vale of Pickering (VoP), NE England, which enables the reconstruction of hydroclimatic changes constrained by a radiocarbon-based chronology. Relative lake-level changes in the VoP occurred in close association (although not necessarily in phase) to threshold shifts across abrupt climate change transitions, most notably lowering during cooling intervals of the LGIT (∼GI-1d, ∼GI-1b, and ∼GS-1). This reflects more arid hydroclimates associated with these cooling episodes in the British Isles. Comparisons to hydrological records elsewhere in Europe show a latitudinal bifurcation, with Northern Europe (50–60°N) becoming more arid (humid), and Southern Europe (40–50°N) becoming more humid (arid) in response to these cooling (warming) intervals. We attribute these bifurcating signals to the relative positions of the Atlantic storm tracks, sea-ice margin, and North Atlantic Polar Front (NAPF) during the climatic events of the LGIT

    First evidence of cryptotephra in palaeoenvironmental records associated with Norse occupation sites in Greenland

    Get PDF
    The Norse/Viking occupation of Greenland is part of a dispersal of communities across the North Atlantic coincident with the supposed Medieval Warm Period of the late 1st millennium AD. The abandonment of the Greenland settlements has been linked to climatic deterioration in the Little Ice Age as well as other possible explanations. There are significant dating uncertainties over the time of European abandonment of Greenland and the potential influence of climatic deterioration. Dating issues largely revolve around radiocarbon chronologies for Norse settlements and associated mire sequences close to settlement sites. Here we show the potential for moving this situation forward by a combination of palynological, radiocarbon and cryptotephra analyses of environmental records close to three ‘iconic’ Norse sites in the former Eastern Settlement of Greenland – Herjolfsnes, Hvalsey and Garðar (the modern Igaliku). While much work remains to be undertaken, our results show that palynological evidence can provide a useful marker for both the onset and end of Norse occupation in the region, while the radiocarbon chronologies for these sequences remain difficult. Significantly, we here demonstrate the potential for cryptotephra to become a useful tool in resolving the chronology of Norse occupation, when coupled with palynology. For the first time, we show that cryptotephra are present within palaeoenvironmental sequences located within or close to Norse settlement ruin-groups, with tephra horizons detected at all three sites. While shard concentrations were small at Herjolfsnes, concentrations sufficient for geochemical analyses were detected at Igaliku and Hvalsey. WDS-EPMA analyses of these tephra indicate that, unlike the predominantly Icelandic tephra sources reported in the Greenland ice core records, the tephra associated with the Norse sites correlate more closely with volcanic centres in the Aleutians and Cascades. Recent investigations of cryptotephra dispersal from North American centres, along with our new findings, point to the potential for cryptotephra to facilitate hypothesis testing, providing a key chronological tool for refining the timing of Norse activities in Greenland (e.g. abandonment) and of environmental contexts and drivers (e.g. climate forcing)

    Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene.

    Get PDF
    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints’ of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plum

    A multi-dating approach to age-modelling long continental records: The 135 ka El Cañizar de Villarquemado sequence (NE Spain)

    Get PDF
    Under embargo until: 2021-06-23We present a multidisciplinary dating approach - including radiocarbon, Uranium/Thorium series (U/Th), paleomagnetism, single-grain optically stimulated luminescence (OSL), polymineral fine-grain infrared stimulated luminescence (IRSL) and tephrochronology - used for the development of an age model for the Cañizar de Villarquemado sequence (VIL) for the last ca. 135 ka. We describe the protocols used for each technique and discuss the positive and negative results, as well as their implications for interpreting the VIL sequence and for dating similar terrestrial records. In spite of the negative results of some techniques, particularly due to the absence of adequate sample material or insufficient analytical precision, the multi-technique strategy employed here is essential to maximize the chances of obtaining robust age models in terrestrial sequences. The final Bayesian age model for VIL sequence includes 16 AMS 14C ages, 9 single-grain quartz OSL ages and 5 previously published polymineral fine-grain IRSL ages, and the accuracy and resolution of the model are improved by incorporating information related to changes in accumulation rate, as revealed by detailed sedimentological analyses. The main paleohydrological and vegetation changes in the sequence are coherent with global Marine Isotope Stage (MIS) 6 to 1 transitions since the penultimate Termination, although some regional idiosyncrasies are evident, such as higher moisture variability than expected, an abrupt inception of the last glacial cycle and a resilient response of vegetation in Mediterranean continental Iberia in both Terminations.acceptedVersio

    Improved age estimates for Holocene Ko-g and Ma-f~j tephras in northern Japan using Bayesian statistical modelling

    No full text
    The Ko-g and Ma-f~j tephras are two key isochronous marker layers in northern Japan, which are from the largest Plinian eruptions of Komagatake volcano (VEI = 5) and Mashu caldera (VEI = 6), respectively. Despite extensive radiocarbon studies associated with the two tephras, individual calibrated results show considerable variations and thus accurate ages of these important eruptions remain controversial. Bayesian statistical approaches to calibrating radiocarbon determinations have proven successful in increasing accuracy and sometimes precision for dating tephras, which is achieved through the incorporation of additional stratigraphic information and the combination of evidence from multiple records. Here we use Bayesian approaches to analyse the proximal and distal information associated with the two tephra markers. Through establishing phase and deposition models, we have taken into account all of the currently available stratigraphic and chronological information. The cross-referencing of phase models with the deposition model allows the refinement of eruption ages and the deposition model itself. Using this we are able to provide the most robust current age estimates for the two tephra layers. The Ko-g and Ma-f~j tephras are hereby dated to 6657-6505 (95.4%; 6586±40, μ±σ) cal yr BP, and 7670-7395 (95.4%; 7532±72, μ±σ) cal yr BP, respectively. These updated age determinations underpin the reported East Asian Holocene tephrostratigraphic framework, and allow sites where the tephra layers are present to be dated more precisely and accurately. Our results encourage further applications of Bayesian modelling techniques in the volcanically active East Asian region
    corecore