211 research outputs found

    Hot Subdwarfs in Resolved Binaries

    Full text link
    In the last decade or so, there have been numerous searches for hot subdwarfs in close binaries. There has been little to no attention paid to wide binaries however. The advantages of understanding these systems can be many. The stars can be assumed to be coeval, which means they have common properties. The distance and metallicity, for example, are both unknown for the subdwarf component, but may be determinable for the secondary, allowing other properties of the subdwarf to be estimated. With this in mind, we have started a search for common proper motion pairs containing a hot subdwarf component. We have uncovered several promising candidate systems, which are presented here.Comment: 6 pages, 4 figures. Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related Objects held in China, 20-24 July 2009. Accepted for publication in Astrophysics and Space Scienc

    Exomoon simulations

    Full text link
    We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets with a satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter-McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.Comment: 5 pages, 2 figures with 9 figure panels, accepted by EM&

    Radial Velocity Survey of Low‐Mass Companions to sdB Stars

    Get PDF
    The origin of subdwarf B (sdB) stars is not fully understood yet since it requires high mass loss at the red giant stage. SdBs in close binary systems are formed via common envelope ejection, but the origin of apparently single sdB stars remains unclear. Substellar companions may be able to trigger common envelope ejection and help forming sdBs that appear to be single. Using a sample of high resolution spectra we aim at detecting small radial velocity (RV) shifts caused by such low mass (sub‐)stellar companions. The RVs are measured with high accuracy using sharp metal lines. Our goal is to test the theoretical predictions and put constraints on the population of the lowest mass companions to sdB stars

    Oscillation frequencies and mode lifetimes in alpha Centauri A

    Full text link
    We analyse our recently-published velocity measurements of alpha Cen A (Butler et al. 2004). After adjusting the weights on a night-by-night basis in order to optimize the window function to minimize sidelobes, we extract 42 oscillation frequencies with l=0 to 3 and measure the large and small frequency separations. We give fitted relations to these frequencies that can be compared with theoretical models and conclude that the observed scatter about these fits is due to the finite lifetimes of the oscillation modes. We estimate the mode lifetimes to be 1-2 d, substantially shorter than in the Sun.Comment: Accepted by Ap

    Substellar companions and the formation of hot subdwarf stars

    Get PDF
    "Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics."We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that besides stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km s(-1)-level. Eclipsing systems of Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.Final Accepted Versio

    Recognition of cancer warning signs and anticipated time to help-seeking in a population sample of adults in the UK

    Get PDF
    Background: Not recognising a symptom as suspicious is a common reason given by cancer patients for delayed help-seeking; but inevitably this is retrospective. We therefore investigated associations between recognition of warning signs for breast, colorectal and lung cancer and anticipated time to help-seeking for symptoms of each cancer. Methods: Computer-assisted telephone interviews were conducted with a population-representative sample (N=6965) of UK adults age greater than or equal to50 years, using the Awareness and Beliefs about Cancer scale. Anticipated time to help-seeking for persistent cough, rectal bleeding and breast changes was categorised as >2 vs less than or equal to2 weeks. Recognition of persistent cough, unexplained bleeding and unexplained lump as cancer warning signs was assessed (yes/no). Associations between recognition and help-seeking were examined for each symptom controlling for demographics and perceived ease of health-care access. Results: For each symptom, the odds of waiting for >2 weeks were significantly increased in those who did not recognise the related warning sign: breast changes: OR=2.45, 95% CI 1.47–4.08; rectal bleeding: OR=1.77, 1.36–2.30; persistent cough: OR=1.30, 1.17–1.46, independent of demographics and health-care access. Conclusion: Recognition of warning signs was associated with anticipating faster help-seeking for potential symptoms of cancer. Strategies to improve recognition are likely to facilitate earlier diagnosis

    Solar-like oscillations in the G2 subgiant beta Hydri from dual-site observations

    Full text link
    We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expected for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.Comment: 13 pages, 14 figures, accepted by ApJ. Fixed minor typo (ref to Fig 14

    Could MicroRNAs be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview

    Get PDF
    Gynecological cancers pose an important public health issue, with a high incidence among women of all ages. Gynecological cancers such as malignant germ-cell tumors, sex-cord-stromal tumors, uterine sarcomas and carcinosarcomas, gestational trophoblastic neoplasia, vulvar carcinoma and melanoma of the female genital tract, are defined as rare with an annual incidence of <6 per 100,000 women. Rare gynecological cancers (RGCs) are associated with poor prognosis, and given the low incidence of each entity, there is the risk of delayed diagnosis due to clinical inexperience and limited therapeutic options. There has been a growing interest in the field of microRNAs (miRNAs), a class of small non-coding RNAs of 22 nucleotides in length, because of their potential to regulate diverse biological processes. miRNAs usually induce mRNA degradation and translational repression by interacting with the 30 untranslated region (30-UTR) of target mRNAs, as well as other regions and gene promoters, as well as activating translation or regulating transcription under certain conditions. Recent research has revealed the enormous promise of miRNAs for improving the diagnosis, therapy and prognosis of all major gynecological cancers. However, to date, only a few studies have been performed on RGCs. In this review, we summarize the data currently available regarding RGCs.peer-reviewe

    The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at ≈2 au

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Gliese 86 is a nearby K dwarf hosting a giant planet on a ≈16 day orbit and an outer white dwarf companion on a ≈century-long orbit. In this study we combine radial velocity data (including new measurements spanning more than a decade) with high angular resolution imaging and absolute astrometry from Hipparcos and Gaia to measure the current orbits and masses of both companions. We then simulate the evolution of the Gl 86 system to constrain its primordial orbit when both stars were on the main sequence; the closest approach between the two stars was then about 9 au. Such a close separation limited the size of the protoplanetary disk of Gl 86 A and dynamically hindered the formation of the giant planet around it. Our measurements of Gl 86 B and Gl 86 Ab’s orbits reveal Gl 86 as a system in which giant planet formation took place in a disk truncated at ≈2 au. Such a disk would be just big enough to harbor the dust mass and total mass needed to assemble Gl 86 Ab’s core and envelope, assuming a high disk accretion rate and a low viscosity. Inefficient accretion of the disk onto Gl 86 Ab, however, would require a disk massive enough to approach the Toomre stability limit at its outer truncation radius. The orbital architecture of the Gl 86 system shows that giant planets can form even in severely truncated disks and provides an important benchmark for planet formation theory.Peer reviewe

    Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System

    Get PDF
    © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Multiplanet systems exhibit a diversity of architectures that diverge from the solar system and contribute to the topic of exoplanet demographics. Radial velocity (RV) surveys form a crucial component of exoplanet surveys, as their long observational baselines allow for searches for more distant planetary orbits. This work provides a significantly revised architecture for the multiplanet system HD 134606 using both HARPS and UCLES RVs. We confirm the presence of previously reported planets b, c, and d with periods of 12.0897 − 0.0018 + 0.0019 , 58.947 − 0.054 + 0.056 , and 958.7 − 5.9 + 6.3 days and masses of 9.14 − 0.63 + 0.65 , 11.0 ± 1, and 44.5 ± 2.9 Earth masses, respectively, with the planet d orbit significantly revised to over double that originally reported. We report two newly detected super-Earths, e and f, with periods of 4.31943 − 0.00068 + 0.00075 and 26.9 − 0.017 + 0.019 days and masses of 2.31 − 0.35 + 0.36 and 5.52 − 0.73 + 0.74 Earth masses, respectively. In addition, we identify a linear trend in the RV time series, and the cause of this acceleration is deemed to be a newly detected massive companion with a very long orbital period. HD 134606 now displays four low-mass planets in a compact region near the star, one gas giant further out in the habitable zone, an additional companion in the outer regime, and a low-mass M dwarf stellar companion at large separation, making it an intriguing target for system formation/evolution studies. The location of planet d in the habitable zone proves to be an exciting candidate for future space-based direct imaging missions, whereas continued RV observations of this system are recommended for understanding the nature of the massive, long-period companion.Peer reviewe
    corecore