3,874 research outputs found

    Gentle Perturbations of the Free Bose Gas I

    Full text link
    It is demonstrated that the thermal structure of the noncritical free Bose Gas is completely described by certain periodic generalized Gaussian stochastic process or equivalently by certain periodic generalized Gaussian random field. Elementary properties of this Gaussian stochastic thermal structure have been established. Gentle perturbations of several types of the free thermal stochastic structure are studied. In particular new models of non-Gaussian thermal structures have been constructed and a new functional integral representation of the corresponding euclidean-time Green functions have been obtained rigorously.Comment: 51 pages, LaTeX fil

    A deformation of AdS_5 x S^5

    Full text link
    We analyse a one parameter family of supersymmetric solutions of type IIB supergravity that includes AdS_5 x S^5. For small values of the parameter the solutions are causally well-behaved, but beyond a critical value closed timelike curves (CTC's) appear. The solutions are holographically dual to N=4 supersymmetric Yang-Mills theory on a non-conformally flat background with non-vanishing R-currents. We compute the holographic energy-momentum tensor for the spacetime and show that it remains finite even when the CTC's appear. The solutions, as well as the uplift of some recently discovered AdS_5 black hole solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde

    Quantum spin systems at positive temperature

    Full text link
    We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β\beta and the magnitude of the quantum spins \CalS satisfy \beta\ll\sqrt\CalS. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with \CalS\gg1. The most notable examples are the quantum orbital-compass model on Z2\Z^2 and the quantum 120-degree model on Z3\Z^3 which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.Comment: 47 pages, version to appear in CMP (style files included

    An X-ray Spectral Survey of Radio-Loud AGN With ASCA

    Get PDF
    We present a uniform and systematic analysis of the 0.6-10 keV X-ray spectra of radio-loud active galactic nuclei (AGN) observed by ASCA. The sample 10 BLRGs, 5 QSRs, 9 NLRGs, and 10 RGs. At soft X-rays, about half of the NLRGs and all of the RGs exhibit a thermal plasma component, with a bimodal distribution of temperatures and luminosities, suggesting an origin either in a surrounding cluster or loose group or in a hot corona. At energies above 2 keV, a hard power-law component is detected in 90% of cases. The power-law photon indices and luminosities in BLRGs, QSRs, and NLRGs are similar, consistent with orientation-based unification schemes. Significant excess cold absorption is detected in most NLRGs, but also in some BLRGS and QSRs, which was somewhat unexpected. In contrast to Seyfert galaxies, only one object showss the signature of a warm absorber. The nuclear X-ray luminosity is correlated with the luminosity of the [O III] emission line, the FIR emission at 12 microns, and the lobe radio power at 5 GHz. The Fe K line is detected in 50% of BLRGs, one QSR, and a handful of NLRGs. This sample also includes 6 Weak Line Radio Galaxies (WLRGs). Their spectra WLRGs can be generally decomposed into a soft thermal component with hard absrorbed power-law component, which is significantly flatter than any other radio-loud AGNs. Their intrinsic luminosities are two orders of magnitude lower than in other sources of the sample. An interesting possibility is that WLRGs represent an extreme population of radio galaxies in which the central black hole is accreting at a rate well below the Eddington rate.Comment: To appear in the Astrophysical Journal. 72 pages, including many tables and figures. Fig 1 is separate, in TIFF format. Postscript version of fig 1 and postscript version of entire preprint can be obtained from http://www.astro.psu.edu/users/mce/preprint_index.htm

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Get PDF
    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts.Major funding for this project was provided to JPC by the Leverhulme Trust (Grant numbers RPG-2012-667 and F/09741/F: https://www. leverhulme.ac.uk/). Additional funding to JPC and studentships to support JHW and SCG came from the Biotechnological and Biological Sciences Research Council (Grant number BB/J011762/1: http://www.bbsrc.ac.uk/). Other additional funding was obtained from the Isaac Newton Trust (http://www. newtontrust.cam.ac.uk/: grant number 12.07/I to AMM).This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/:10.1371/journal.ppat.100579

    THE UNIQUENESS THEOREM FOR ROTATING BLACK HOLE SOLUTIONS OF SELF-GRAVITATING HARMONIC MAPPINGS

    Get PDF
    We consider rotating black hole configurations of self-gravitating maps from spacetime into arbitrary Riemannian manifolds. We first establish the integrability conditions for the Killing fields generating the stationary and the axisymmetric isometry (circularity theorem). Restricting ourselves to mappings with harmonic action, we subsequently prove that the only stationary and axisymmetric, asymptotically flat black hole solution with regular event horizon is the Kerr metric. Together with the uniqueness result for non-rotating configurations and the strong rigidity theorem, this establishes the uniqueness of the Kerr family amongst all stationary black hole solutions of self-gravitating harmonic mappings.Comment: 18 pages, latex, no figure

    Proliferation regulation of haematopoietic stem cells in normal and leukaemic haematopoiesis

    Get PDF
    The cellular integrity of the blood is maintained by the cellular output of the haematopoietic stem cell population which produces the specialized precursors and differentiated cells which constitute the blood. The investigation of haematopoietic stem cell behaviour and regulation has been hampered by both the difficulty in their identification and the development of relevant assay systems. The purpose of this investigation was to study the behaviour and regulation of the haematopoietic stem cell population in normal and leukaemic haematopoiesis using an in vitro assay of a primitive haematopoietic precursor. The use of a combination of haematopoietic colony-stimulating factors [interleukin 3 (IL3)/multi-CSF and macrophage colony-stimulating factor (M-CSF/CSF-1)] in semi-solid agar culture of murine haematopoietic tissue, stimulated the proliferation of a haematopoietic colony-forming cell, defined as the "HPP-CFCIL3+CSF-1" population, which was characterized by a high proliferative potential, a multipotency and behavioural and regulatory properties consistent with its being a primitive haematopoietic precursor and possibly a component of the haematopoietic stem cell population. The proportion of the in vitro HPP-CFCIL3+csf-1 population in S-phase in normal murine marrow, was determined to be relatively low at approximately 10%, increasing to approximately 40% in sublethally X-irradiated, regenerating murine marrow and the respective presence of the haematopoietic stem cell proliferation inhibitor and stimulator was demonstrable by the induction of appropriate kinetic changes in the in vitro HPP-CFCIL3+CSF-1 population. In leukaemic haematopoiesis, leukaemic proliferation often occurs at the expense of apparently suppressed normal haematopoiesis. In vitro HPP-CFCIL3+CSF-1 assay of the haematopoietic stem cell proliferation regulators in a number of murine, myeloid leukaemic cell lines, failed to demonstrate either increased levels of the haematopoietic stem cell proliferation inhibitor, or evidence of a direct-acting, leukaemia- associated proliferation inhibitor, however, evidence of a leukaemia- associated impairment of inhibitor and stimulator production was observed and this may be a possible mechanism by which the leukaemic population develops a proliferative advantage over normal haematopoietic tissue. The identification of a possible mechanism of leukaemic progression and suppression of normal haematopoiesis may subsequently allow the development of potentially more effective disease treatment and management regimes. The endogenous haemoregulatory tetrapeptide: Acetyl-N-Ser- Asp-Lys-Pro [AcSDKP, Mr=487 amu] is reported to prevent the G0-G1 transition of haematopoietic stem cells into S-phase. The mechanism of action of AcSDKP and a number of related peptides, was investigated in relation to the stem cell proliferation stimulator and inhibitor. AcSDKP demonstrated no direct haemoregulatory role against the in vitro HPP-CFCIL3+CSF-1 population, which is consistent with reports that AcSDKP is not active against cells already in late G1, or S-phase, rather it appeared to act indirectly by impairing the capacity of the haematopoietic stem cell proliferation stimulator to increase the proportion of the in vitro HPP-CFCIL3+CSF-1 population in S-phase. An apparent impairment of stimulator action may explain the reported AcSDKP-associated 'block' of haematopoietic stem cell recruitment. A putative endogenous AcSDKP precursor and synthetic and degradative enzyme systems have been reported and the possible physiopathological role of AcSDKP in a number of myeloproliferative disorders has been implicated. The potential application of AcSDKP as a 'haemoprotective' agent administered prior to the use of S-phase- specific chemotherapy may be of clinical significance. The in vitro HPP-CFCIL3+CSF-1 assay of a primitive haematopoietic precursor cell population, which may be a component of the haematopoietic stem cell population, should play a significant role in the investigation of haematopoietic stem cell behaviour and regulation in both normal and aberrant haematopoiesis. With the characterization of the mechanism(s) of action of the haematopoietic stem cell proliferation inhibitor and stimulator and the haemoregulatory tetrapeptide AcSDKP, the manipulation of the haematopoietic system to clinical advantage can be envisaged, while the identification of the aberrant regulatory mechanism(s) in haematopoietic dysfunction may allow, the development of more effective disease treatment and management regimes
    corecore