12,463 research outputs found

    Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Get PDF
    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is dis-cretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence

    Mesoscopic Charge Relaxation

    Full text link
    We consider charge relaxation in the mesoscopic equivalent of an RC circuit. For a single-channel, spin-polarized contact, self-consistent scattering theory predicts a universal charge relaxation resistance equal to half a resistance quantum independent of the transmission properties of the contact. This prediction is in good agreement with recent experimental results. We use a tunneling Hamiltonian formalism and show in Hartree-Fock approximation, that at zero temperature the charge relaxation resistance is universal even in the presence of Coulomb blockade effects. We explore departures from universality as a function of temperature and magnetic field.Comment: 4 pages, 3 figure

    Covariant thermodynamics & relativity

    No full text
    This thesis deals with the dynamics of irreversible processes within the context of the general theory of relativity. In particular, we address the problem of the `infinite' speed of propagation of thermal disturbances in a dissipative fluid. Although this problem is not new, its best known solution - the Israel and Stewart second order expansion - has an effective, rather than fundamental, character. The present work builds on the multi-fluid variational approach to relativistic dissipation, pioneered by Carter, and provides a dynamical theory of heat conduction. The novel property of such approach is the thermodynamic interpretation associated with a two-fluid system whose constituents are matter and entropy. The dynamics of this model leads to a relativistic generalisation of the Cattaneo equation; the constitutive relation for causal heat transport. A comparison with the Israel and Stewart model is presented and its equivalence is shown. This discussion provides new insights into the not-well understood definition of a non-equilibrium temperature. A crucial feature of the multi-fluid approach is the interaction between its constituents. It is a well known fact that when two, or more, fluids interact, instabilities may occur. Within this work, the two-stream instability analysis is extended to the relativistic domain. As far as the author is aware, such extension has not been discussed in the literature. The analysis allows to assess the stability and causality of relativistic models of matter and their linear deviations from thermodynamic equilibrium directly from their equations of state or, equivalently, their Lagrangian densities. For completeness, a brief digression on a consistent (stable and causal) `first-order' model is also included. Finally, the road to follow is laid by posing some physical applications together with some future perspectives and closing remarks. To sum up, the variational approach to heat conduction presented in this thesis constitutes a mathematically promising formalism to explore the relativistic evolution towards equilibrium of dissipative fluids in a dynamical manner and to get a deeper conceptual understanding of non-equilibrium thermodynamic quantities. Moreover, it might also be useful to explore the more fundamental issues of the irreversible dynamics of relativity and its connections with the time asymmetry of natur

    Composite Fermions with Orbital Magnetization

    Full text link
    For quantum Hall systems, in the limit of large magnetic field (or equivalently small electron band mass mbm_b), the static response of electrons to a spatially varying magnetic field is largely determined by kinetic energy considerations. This response is not correctly given in existing approximations based on the Fermion Chern-Simons theory of the partially filled Landau level. We remedy this problem by attaching an orbital magnetization to each fermion to separate the current into magnetization and transport contributions, associated with the cyclotron and guiding center motions respectively. This leads to a Chern-Simons Fermi liquid description of the ν=12m\nu=\frac{1}{2m} state which correctly predicts the mbm_b dependence of the static and dynamic response in the limit mb0m_b \rightarrow 0.Comment: 4 pages, RevTeX, no figure

    A novel method for unambiguous ion identification in mixed ion beams extracted from an EBIT

    Get PDF
    A novel technique to identify small fluxes of mixed highly charged ion beams extracted from an Electron Beam Ion Trap (EBIT) is presented and practically demonstrated. The method exploits projectile charge state dependent potential emission of electrons as induced by ion impact on a metal surface to separate ions with identical or very similar mass-to-charge ratio.Comment: 8 pages, 5 figure

    Global discovery and characterization of small non-coding RNAs in marine microalgae

    Get PDF
    Background Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions

    A Comprehensive Analysis of 5G Heterogeneous Cellular Systems operating over κ\kappa-μ\mu Shadowed Fading Channels

    Get PDF
    Emerging cellular technologies such as those proposed for use in 5G communications will accommodate a wide range of usage scenarios with diverse link requirements. This will include the necessity to operate over a versatile set of wireless channels ranging from indoor to outdoor, from line-of-sight (LOS) to non-LOS, and from circularly symmetric scattering to environments which promote the clustering of scattered multipath waves. Unfortunately, many of the conventional fading models adopted in the literature to develop network models lack the flexibility to account for such disparate signal propagation mechanisms. To bridge the gap between theory and practical channels, we consider κ\kappa-μ\mu shadowed fading, which contains as special cases, the majority of the linear fading models proposed in the open literature, including Rayleigh, Rician, Nakagami-m, Nakagami-q, One-sided Gaussian, κ\kappa-μ\mu, η\eta-μ\mu, and Rician shadowed to name but a few. In particular, we apply an orthogonal expansion to represent the κ\kappa-μ\mu shadowed fading distribution as a simplified series expression. Then using the series expressions with stochastic geometry, we propose an analytic framework to evaluate the average of an arbitrary function of the SINR over κ\kappa-μ\mu shadowed fading channels. Using the proposed method, we evaluate the spectral efficiency, moments of the SINR, bit error probability and outage probability of a KK-tier HetNet with KK classes of BSs, differing in terms of the transmit power, BS density, shadowing characteristics and small-scale fading. Building upon these results, we provide important new insights into the network performance of these emerging wireless applications while considering a diverse range of fading conditions and link qualities
    corecore