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Parallel numerical modeling of hybrid-dimensional
compositional non-isothermal Darcy flows in fractured porous
media

F. Xing* R. Masson! S. Lopez?

Abstract

This paper introduces a new discrete fracture model accounting for non-isothermal compo-
sitional multiphase Darcy flows and complex networks of fractures with intersecting, immersed
and non immersed fractures. The so called hybrid-dimensional model using a 2D model in the
fractures coupled with a 3D model in the matrix is first derived rigorously starting from the
equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time inte-
gration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is
adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems
are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm
with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems.
An efficient preconditioner is implemented to solve the linear systems at each time step and each
Newton type iteration of the simulation. The numerical efficiency of our approach is assessed
on different meshes, fracture networks, and physical settings in terms of parallel scalability,
nonlinear convergence and linear convergence.

1 Introduction

Flow and transport in fractured porous media are of paramount importance for many applications
such as petroleum exploration and production, geological storage of carbon dioxide, hydrogeology,
or geothermal energy. Two classes of models, dual continuum and discrete fracture models, are typi-
cally employed and possibly coupled to simulate flow and transport in fractured porous media. Dual
continuum models assume that the fracture network is well connected and can be homogeneized as
a continuum coupled to the matrix continuum using transfer functions. On the other hand, discrete
fracture models (DFM), on which this paper focuses, represent explicitly the fractures as codimen-
sion one surfaces immersed in the surrounding matrix domain. The use of lower dimensional rather
than equi-dimensional entities to represent the fractures has been introduced in [1], [2], [3], [4], [5]
to facilitate the grid generation and to reduce the number of degrees of freedom of the discretized
model. The reduction of dimension in the fracture network is obtained from the equi-dimensional
model by integration and averaging along the width of each fracture. The resulting so called hybrid-
dimensional models couple the 3D model in the matrix with a 2D model in the fracture network
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taking into account the jump of the normal fluxes as well as additional transmission conditions at
the matrix fracture interfaces. These transmission conditions depend on the mathematical nature of
the equi-dimensional model and on additional physical assumptions. They are typically derived for
a single phase Darcy flow for which they specify either the continuity of the pressure in the case of
fractures acting as drains (see [1], [6]) or Robin type conditions in order to take into account the dis-
continuity of the pressure for fractures acting as barriers (see [2], [5], [7], [8]). Different transmission
conditions are derived in [9] in the case of a linear hyperbolic equation, and in [10], [11], [12], [13],
[14] in the case of two-phase immiscible Darcy flows.

The discretization of hybrid-dimensional Darcy flow models has been the object of many works. In
[4] a cell-centred Finite Volume scheme using a Two Point Flux Approximation (TPFA) is proposed
assuming the orthogonality of the mesh and isotropic permeability fields. Cell-centred Finite Volume
schemes can be extended to general meshes and anisotropic permeability fields using MultiPoint
Flux Approximations (MPFA) (see [15], [16], [17], [18], [19]). MPFA schemes can lack robustness on
distorted meshes and large anisotropies due to the non symmetry of the discretization. They are also
very expensive compared with nodal discretizations on tetrahedral meshes. In [1], a Mixed Finite
Element (MFE) method is proposed for single phase Darcy flows. It is extended to two-phase flows
in [11] in an IMPES framework using a Mixed Hybrid Finite Element (MHFE) discretization for the
pressure equation and a Discontinuous Galerkin discretization of the saturation equation. The Hy-
brid Finite Volume and Mimetic finite difference schemes, belonging to the family of Hybrid Mimetic
Mixed Methods (HMM) [20], have been extended to hybrid-dimensional models in [21], [22] as well as
in [6], [8] in the more general Gradient Discretization framework [23]. These approaches are adapted
to general meshes and anisotropy but require as many degrees of freedom as faces. Control Volume
Finite Element Methods (CVFE) [3], [10], [24], [15] have the advantage to use only nodal unknowns
leading to much fewer degrees of freedom than MPFA and HMM schemes on tetrahedral meshes. On
the other hand, at the matrix fracture interfaces, the control volumes have the drawback to be shared
between the matrix and the fractures. It results that a strong refinement of the mesh is needed at
these interfaces in the case of large contrasts between the matrix and fracture permeabilities. This
article focus on the Vertex Approximate Gradient (VAG) scheme which has been introduced for the
discretization of multiphase Darcy flows in [25] and extended to hybrid-dimensional models in [13],
6], [8], [9], [14]. The VAG scheme uses nodal and fracture face unknowns in addition to the cell
unknowns which can be eliminated without any fill-in. Thanks to its essentially nodal feature, it
leads to a sparse discretization on tetrahedral or mainly tetrahedral meshes. It has the advantage,
compared with the CVFE methods of [3], [10], [24] or [26], to avoid the mixing of the control volumes
at the matrix fracture interfaces, which is a key feature for its coupling with a transport model. As
shown in [13] for two-phase flow problems, this allows for a coarser mesh size at the matrix fracture
interface for a given accuracy. Let us also mention that non-matching discretizations of the fracture
and matrix meshes are studied for single phase Darcy flows in [27], [28], [29] and [30].

The first objective of this paper is to extend the derivation of the hybrid-dimensional model to
the case of non-isothermal compositional multiphase Darcy flows. To focus on compositional non-
isothermal features, capillary pressures are not considered in this paper. They could be included
following the usual phase based upwinding approach as in [25] or recent ideas developed in [31] for
two-phase flows. Let us refer to [32] for a comparison of both approaches in the case of an immiscible
two-phase flow using a reference solution provided by the equi-dimensional model in the fractures.
All the underlying assumptions of our reduced model will be carefully stated. In particular, the
fractures are considered as pervious and are assumed not to act as barriers. It results, as in [1],
that the pressure can be considered as continuous at the matrix fracture interfaces. The hybrid-
dimensional model accounts for complex network of fractures including intersecting, immersed and



non immersed fractures. The formulation of the compositional model is based on a Coats’ type
formulation [33], [34] extending the approach presented in [25] to non-isothermal flows. It accounts
for an arbitrary nonzero number of components in each phase allowing to model immiscible, partially
miscible or fully miscible flows.

The second objective of this paper is to extend the VAG discretization to our model and to develop
an efficient parallel algorithm implementing the discrete model. Following [25], [13], the discretization
is based on a finite volume formulation of the component molar and energy conservation equations.
The definition of the control volumes is adapted to the heterogeneities of the porous medium and
avoids in particular the mixing of matrix and fracture rocktypes for the degrees of freedom located at
the matrix fracture interfaces. The fluxes combine the VAG Darcy and Fourier fluxes with a phase
based upwind approximation of the mobilities. A fully implicit Euler time integration coupling the
conservation equations with the local closure laws including thermodynamical equilibrium is used in
order to avoid severe limitations on the time step due to the high velocities and small control volumes
in the fractures.

The discrete model is implemented in parallel based on the SPMD (Single Program, Multiple
Data) paradigm. It relies on a distribution of the mesh on the processes with one layer of ghost cells
in order to allow for a local assembly of the discrete systems. The key ingredient for the efficiency
of the parallel algorithm is the solution, at each time step and at each Newton type iteration, of
the large sparse linear system coupling the physical unknowns on the spatial degrees of freedom of
the VAG scheme. Our strategy is first based on the elimination, without any fill-in, of both the
local closure laws and the cell unknowns. Then, the reduced linear system is solved using a parallel
iterative solver preconditioned by a CPR-AMG preconditioner introduced in [35] and [36]. This state
of the art preconditioner combines multiplicatively an Algebraic MultiGrid (AMG) preconditioner
for a proper pressure block of the linear system with a local incomplete factorization preconditioner
for the full system. The numerical efficiency of the algorithm, in terms of parallel scalability, nonlin-
ear convergence and linear convergence, is investigated on several test cases. We consider different
families of meshes and different complexity of fracture networks ranging from a few fractures to say
about 1000 fractures with highly contrasted matrix fracture permeabilities. The test cases incorpo-
rate different physical models including one isothermal immiscible two-phase flow, one isothermal
Black Oil two-phase flow model, as well as three non-isothermal water component liquid gas flow
models.

This paper is organized as follows. In section 2, the hybrid-dimensional non-isothermal compo-
sitional multiphase Darcy flow model is derived from the equi-dimensional model. In Section 3, the
VAG discretization is briefly recalled and then extended to our model. The parallel algorithm is
detailed in section 4. Section 5 is devoted to the test cases including the numerical investigation of
the parallel scalability of the algorithm.

2 Hybrid-dimensional compositional non-isothermal Darcy
flow model

This section deals with the modeling and the formulation of non-isothermal compositional multiphase
Darcy flows in fractured porous media. The fractures are represented as surfaces of co-dimension
one immersed in the surrounding three dimensional matrix domain. The 2D Darcy flow in the
fracture network is coupled with the 3D Darcy flow in the matrix domain, hence the terminology
of hybrid-dimensional model. The reduction of dimension in the fracture is obtained by extension
to non-isothermal compositional flows of the methodology introduced in [1], [2], [5] for single phase
Darcy flows. Complex networks of fractures are considered including immersed, non immersed and



intersecting planar fractures. The formulation of the compositional model is based on a Coats’ type
formulation [33] extending to non-isothermal flows the approach presented in [25]. It accounts for
an arbitrary nonzero number of components in each phase allowing to model immiscible, partially
miscible or fully miscible flows. To focus on the compositional and non-isothermal aspects, we
consider a Darcy flow model without capillary pressures. The capillary pressures including different
rocktypes at the matrix fracture interface can be taken into account in the framework of the VAG
scheme following the usual phase based upwinding of the mobilities as in [25]. An alternative approach
is proposed in [31] for two-phase flows in order to capture the jump of the saturations at the matrix
fracture interface I' due to discontinuous capillary pressure curves. These two choices are compared
in [32] to a reference solution provided by an equi-dimensional model in the fractures. It is shown that
the second choice provides a better solution as long as the matrix acts as a barrier since it captures
the saturation jump. On the other hand, the first choice provides a more accurate solution when
the non wetting phase goes out of the fractures since the mean capillary pressure in the fractures is
better approximated.

2.1 Extended Coats’ formulation of non-isothermal compositional mod-
els

Let us denote by P the set of phases and by C the set of components. Each phase a € P is described
by its non empty subset of components C* C C in the sense that it contains the components i € C*.
It is assumed that, for any ¢ € C, the set of phases containing the component ¢

P, ={aePl|ieC}.

is non empty. The thermodynamical properties of each phase @ € P depend on the pressure P, the
temperature 7T, and the molar fractions

)

C* = (CF);cco -

For each phase @ € P, we denote by (*(P,T,C%) the molar density, by p®(P,T,C*) the mass
density, by pu*(P,T,C®) the dynamic viscosity, by f*(P,T,C?), i € C* the fugacity coefficients,
by e*(P,T,C?®) the molar internal energy, and by h*(P,T,C®) the molar enthalpy. The relative
permeabilities are denoted for each phase av € P by k%(S) where S = (S%)aep is the vector of the
phase volume fractions (saturations). The model takes into account phase change reactions which
are assumed to be at equilibrium. It results that phases can appear or disappear. Therefore, we
denote by Q C P, @ # () the unknown representing the set of present phases. For a given set of
present phases (), it may occur that a component ¢ € C does not belong to the subset UQGQ C of C.
Hence, we define the subset of absent components as a function of ) by

Co={ieC|QnP =0}

Following [33], [34], [25], the extended non-isothermal Coats’ formulation relies on the the so-called
natural variables and uses the set of unknowns

X = (P,T,Sa,Ca,aeQ,ni,i eZQ,Q)

The saturations are implicitely set to S = 0 for all absent phases a € P \ Q). Let us denote by
n;(X) the number of moles of the component ¢ € C per unit pore volume defined as the independent
unknown n; for 7 € Cg and as

ni(X)= > ("(PT,C* 5 Cp

acQNP;



for i € C\ Co. The fluid energy per unit pore volume is denoted by

E(X)=> (*(P,T,C*)S"(P,T,C®),
a€eqQ

and the rock energy per unit rock volume is denoted by E,(P,T'). For each phase a € @), we denote
by m&(X) the mobility of the component i € C* in phase a € () with

k2 (S)

A(X) = CoC (P T, C%) i
mi(X) =GP T, %) o Gy

(2

and by
k7 (S)
p(P,T,C*)

the flowing enthalpy in phase o € . The generalized Darcy velocity of the phase a € @ is

mg(X) = h*(P,T,C¢(P,T,C%)

e

k()

@ with V¥ = — K P— o¥P.T.C*
eV MV (v p(P,T,C )g),

where g is the gravitational acceleration. The total molar flux of the component i € C \EQ is denoted

by

aEQNP;

and the energy flux is defined as
q. =Y md(X)V® = AVT,
ac@

where A is the thermal conductivity of the fluid and rock mixture.
The system of equations accounts for the molar conservation for each component ¢ € C and the
energy conservation

gb@tni + le(Qz) = 0, 1€ C,

¢ E + (1 — ¢)0,E, + div(q.) = 0, (1)

coupled to the following local closure laws including the thermodynamical equilibrium for each com-
ponent ¢ present in at least two phases among the set of present phases ()

Y Cr=1, aeQ, (2)
FAP,T,CNCF =f(P,T,CP)CY, a# B, (o, 8) € (QNP)* i €C.

The system is closed with an additional equation for the discrete unknown () which is typically
obtained by a flash calculation or by simpler criteria depending on the specific thermodynamical
system. It provides the fixed point equation denoted by

Q = Qflash(X)-
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Figure 1: Example of a 2D domain with 3 intersecting fractures I'y, 'y, I'3.

2.2 Discrete fracture network

Let Q denote a bounded domain of R? assumed to be polyhedral. Following [1], [2], [5], [6], [8] the
fractures are represented as interfaces of codimension 1. Let J be a finite set and let T = icd ['; and
its interior I' = T'\ 0T denote the network of fractures I'; € Q, j € J, such that each I'; is a planar
polygonal simply connected open domain included in an oriented plane of R3. The fracture width is
denoted by dy and is such that 0 < d, < dy(x) < dy for all x € . We can define, for each fracture
7 € J, its two sides + and —. For scalar functions on 2, possibly discontinuous at the interface I'
(typically in H*(Q\ T'), we denote by 4* the trace operators on the side 4 of I'. Continuous scalar
functions u at the interface I' (typically in H'(Q)) are such that v u = v~ u and we denote by ~y the
trace operator on I' for such functions. At almost every point of the fracture network, we denote by
n® the unit normal vector oriented outward to the side + of I' such that n* +n~ = 0. For vector
fields on €2, possibly discontinuous at the interface I' (typically in H g;, (2 \T), we denote by v the
normal trace operator on the side + of I' oriented outward to the side 4+ of I'.

The gradient operator in the matrix domain Q \ T is denoted by V and the tangential gradient
operator on the fracture network is denoted by V., such that

V,u=Vu— (Vu-n")n*.

We also denote by div, the tangential divergence operator on the fracture network, and by dr(x) the
Lebesgue measure on I'.

We denote by ¥ the dimension 1 open set defined by the intersection of the fractures excluding
the boundary of the domain €2, i.e. the interior of Uy inec x| jzn 015 N Oy \ 08

For the matrix domain, Dirichlet (subscript D) and Neumann (subscript N) boundary conditions
are imposed on the two dimensional open sets 9Qp and 0y respectively where 9Qp N OOy = 0,
00 = 0QpUIQy. Similarly for the fracture network, the Dirichlet and Neumann boundary conditions
are imposed on the one dimensional open sets O'p and OI'y respectively where OI'p N OT'y = 0,

2.3 Hybrid-dimensional model for a two-phase flow example

For the sake of clarity, in this subsection, we first extend the hybrid-dimensional model proposed in
[1], [2], [5] in the case of a single phase Darcy flow to the case of a two-phase Darcy flow.

Let us denote by ()r the averaging operator in the width of the fracture in the normal direc-
tion, and let us set S¢ = (S%)r and Py = (P)r. In order to explain our construction of the
hybrid-dimensional model from the equi-dimensional model, let us consider the following immiscible,



incompressible isothermal two-phase flow model on the full domain €2 with 3D fractures
¢S 4+ div(q®) =0, a = 1,2,
with constant dynamic viscosities u®, @ = 1,2 and the following Darcy two-phase velocities

o =~V (vp gy a=12
/J/OC
where S! + 82 = 1. The permeability tensor K is assumed to be constant in the width of the
fractures and to have the normal vector n" as principal direction. We denote by K the corresponding
tangential permeability tensor and by £, the corresponding normal permeability, both defined as
function of x € I'. The porosity is also assumed to be constant in the width of the fracture and
denoted by ¢ as a function defined on I'.

The reduction of dimension in the fractures is based on the assumption that d; < diam(2). It is
obtained by integration of the conservation equations along the width of the fractures in the normal
direction using the approximation k*(S¢) of k¥(S®) in the definition of the tangential flux in the
fractures

dppp0rST + div,(qF) —1may, —mdy, =0, a = 1,2,

k(SF)
qa = Va7 a = 17 27
f Lo f (3)
V;’cé = —def(VTPf - pagT), o = 1, 2,
S;+57=1,

with g, =g — (g-n")n" ._This conservation equation on I' is coupled to the conservation equation
in the matrix domain 2\ I'

GOm0 S +div(qr) =0, a =1,2,

k.Oé (e}
qm = M 7(:17 = 1727
I (4)
Ve =—-K,.(VP,, — p°g), a =1,2,
S+ S5 =1,

where we use the subscript m to denote the properties and unknowns of the reduced model defined
in the matrix domain.

This hybrid-dimensional model (3)-(4) is closed with transmissions conditions at the matrix frac-
ture interface I'. They are based on the following two-point flux approximation of the normal fluxes
at both sides + of the fractures. As opposed to the model proposed in [12], we take into account the
gravity term which cannot be neglected.

2k

a,+ fin o

Vin = d—f(ViPm — Py) +kpnp®g -0t a=1,2. (5)
In [12], the definition of the normal fluxes 7y Fq% is obtained with the mobility kgﬁf? ) using the

mean saturation in the width of the fracture. This choice cannot account for the propagation of
the saturation front from the matrix to the fracture. To solve this problem, we propose to use a
monotone two point flux between the interface on the matrix side and the centre of the fracture. Our
choice is based on the phase based upwind flux leading to upwind the mobility with respect to the
sign of Vf‘f‘;li. For any a € R let us set a™ = max(a,0) and a~ = min(a,0). The normal fluxes are

7



obtained using the following upwind approximations of the mobilities with respect to the sign of the
phase normal velocities

EX(ST) s
VEQS = Maf (Vi)™ +

k& (y=5%)
MO&

(Vi) a=1,2. (6)

This phase based upwinding of the mobilities is known to lead to a two point monotone flux for the
saturation equation. It also provides a flux consistency error of the order of the ratio between the
width of the fracture and the size of the matrix domain, which is assumed to be small.

Note also that the use of the mean saturation S¢ in the mobilities (6) for output fluxes from the
fracture to the matrix basically assumes that the saturation in the fracture is well approximated by
a constant along the width. This holds true for fractures with a high conductivity d;K; compared
with the conductivity of the matrix diam(2)K,,. This condition will be assumed in the following.

Moreover, when ké}" > #WEQ)’ the transmission condition (5) can be further approximated by

the pressure continuity condition at the matrix fracture interface I'
P)/erm:’YiPm:’YPm:Pfa (7>

recovering the condition introduced in [1] for single phase Darcy flows. In this case, the definition of

the normal fluxes (6) is modified as follows using the normal trace vV of V& rather than V?‘f:

k2 (S¥)

Yol = — (1 Vo) +

ke (y=52)
Iua (03

(EVe) T a=1,2 (8)

In the following, we will assume that this approximation holds which means that we consider the
case of fractures acting as drains and exclude the case of fractures acting as barriers.

Finally, closure conditions are set at the immersed boundary of the fracture network OI' \ 02
(fracture tips) as well as at the intersection ¥ between fractures. Let v, (resp. Tnor,»J € J ) denote

the normal trace operator at the fracture network boundary (resp. fracture I'; boundary) oriented
outward to I' (resp. I';). At fracture tips, it is classical to assume homogeneous Neumann boundary
conditions in the sense that

Ynord} = 0, on II'\ 09, a = 1,2,

meaning that the flow at the tip of a fracture can be neglected compared with the flow along the
sides of the fracture. At the fracture intersection X, we introduce the additional unknowns Ps, S§,
a = 1,2 and we impose the normal flux conservation equations

Z(Vnarjq?)‘il =0, a=12,

jedJ

meaning that the volume at the intersection between fractures is neglected. The saturations S%,

a = 1,2 are such that S§ + S = 1 and play the role of the input saturations at the fracture
intersection. In addition, we also impose the continuity of the pressure Py = Ps at ¥. This amounts
to assume a high ratio between the permeability at the intersection and the fracture width compared
with the ratio between the tangential permeability of each fracture and its lengh.

2.4 Hybrid-dimensional non-isothermal compositional model

The hybrid-dimensional non-isothermal compositional model is obtained following the above strategy
for the dimension reduction. The set of unknowns is defined by X, in the matrix domain 2\ I', by

8



Xy in the fracture network I', and by Xy, at the fracture intersection . The set of equations couples
the molar and energy conservation equations in the matrix
qu@tnz(Xm) + le(qum> :O, 7 € C,

OmOE( X)) + (1 — )0 Er (P, i) + div(ge,m) =0, (9)

in the fracture network
dyrOni(Xp)+dive(di,f) — Y Qim — Voo Qigm = 0, 7 € C,
digrO E(Xy)+dp(1 — ¢5)0EL (P, Ty) (10)
+diVT(qe,f) - P)/;_qe,m - nge,m = 07

and at the fracture intersection
(Vnar-qi,fﬂz =0,1 € Ca
> (nor,
jeJ

Z(’ynarj qe,f) |Z =0,

jed

(11)

as well as the Darcy and Fourier laws providing the fluxes in the matrix

Qi;m = Z m;;l (Xm)ng

a€eQmNP;

(12)
e,m = Z m?(Xm)V?n - )\mVTrru
OleQm
and in the fracture network
ar= Y, mi(XpVY,
aEQfﬁ’Pi (13>
Qop= Y me(Xp)V§ —dpA V. Ty,
acQy
where
Vi, = Ky (VP = 0 (P, T C ).
Vi = —dgK; (V. Py - p°(Pr Ty, Ce: )
and finally the local closure laws including the thermodynamical equilibrium
I
OCEQV
Z Ci,l/ :17 « E Qy, (14)
1eCe

foP, T, Co)C, =f2(P,, T,,C)CY,, a# B, (e, ) € (QuNP)% i €C,
Qu :Qflash<Xu)7

for v = m, f,X. The system (9)-(10)-(11)-(12)-(13)-(14) is closed with the transmission conditions
at the matrix fracture interface I'. These conditions state, as above, the continuity of the pressure
complemented for non-isothermal models with the continuity of the temperature. It is combined with

9



a phase based upwind approximation of the mobilities in the matrix fracture normal fluxes. This
corresponds to the usual finite volume two point upwind scheme for the mobilities (see e.g. [37])
applied for our reduced model in the normal direction between the centre of the fracture and each
side of the fracture.

’7+Pm:'y_Pm:’7Pm:Pfa

/7+Tm =5 T =7Tn= Tf,

Vo Ui = 105 (Xp) (7, Vi) ™+ (75 X) (3 Vi) T

T bean = ME(Xp) (9 Vi)™ +m (Y X0) (10 Vi)™ + 70 (= AV T).

(15)

Note also that the pressure Py (resp. the temperature T) is assumed continuous and equal to P
(resp. T%) at the fracture intersection 3, and that homogeneous Neumann boundary conditions are
applied for each component molar q; s and energy q. ; fluxes at the fracture tips OI' \ Q.

Regarding the boundary conditions, to fix ideas, we restrict ourselves to either Dirichlet or ho-
mogeneous Neumann boundary conditions. At the Dirichlet matrix boundary 0€2p (resp. Dirichlet
fracture boundary 0I'p) the pressure P, p (resp. Py p), temperature T, p (resp. Ty p), are specified,
as well as the set of input phases ., p (resp. Qyp), their volume fractions Sy, ,, @ € Qu p (resp.
S%¢p, @ € Qy,p) and their molar fractions Cy, ), @ € Qmp (resp. CFp, a € Qy p) assumed to satisfy
the local closure laws. Then, we set for v = m, f

P, =P, p,
T, =T, p,
S, =S,yp fora€@,pif Vj-n, <0,
C, =Cypfora€@,pif Vj-n, <0,

(16)

where n,, is the output unit normal vector at the boundary 0€2p for v = m, and at the boundary
ol'p for v = f.

Homogeneous Neumann boundary conditions are applied at the boundaries €2y and OI'y in the
sense that q;, - n, = 0 for : € CU {e}, v = m, f, where n, is the output unit normal vector at the
boundary 02y for v = m, and at the boundary 0I'y for v = f.

3 Discretization and algorithm

3.1 VAG discretization

The VAG discretization of hybrid-dimensional two-phase Darcy flows introduced in [13] considers
generalised polyhedral meshes of € in the spirit of [38]. In short, the mesh is assumed conforming,
the cells are star-shapped polyhedrons, and faces are not necessarily planar in the sense that they
can be defined as the union of triangles joining the edges of the face to a so-called face centre. In
more details, let M be the set of cells that are disjoint open polyhedral subsets of €2 such that
Ukem K =Q, for all K € M, xj denotes the so-called “centre” of the cell K under the assumption
that K is star-shaped with respect to xx. The set of faces of the mesh is denoted by F and F is
the set of faces of the cell K’ € M. The set of edges of the mesh is denoted by £ and &, is the set of
edges of the face o € F. The set of vertices of the mesh is denoted by V and V, is the set of vertices
of the face 0. For each K € M we define Vk = J,cr, Vo-

The faces are not necessarily planar. It is just assumed that for each face o € F, there exists a
so-called “centre” of the face x, € 0\ ¢ € such that x, = >\, Bos Xs, With > ), fos = 1,
and B,¢ > 0 for all s € V,;; moreover the face o is assumed to be defined by the union of the triangles
T, . defined by the face centre x, and each edge e € £,. The mesh is also supposed to be conforming
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w.r.t. the fracture network I' in the sense that for all j € J there exist the subsets Fr, of F such

that _
O’E]'-rj
We will denote by Fr the set of fracture faces
fl—‘ = U ]:ij
jeJ
and by
VF = U VU?
ocEFT

the set of fracture nodes. This geometrical discretization of 2 and I' is denoted in the following by
D.
In addition, the following notations will be used

Ms={KeM|seVx}, M,={K e M]|o e Fg},

and
fr,s = {O’ < fF|S € Vg}.

The VAG discretization is introduced in [38] for diffusive problems on heterogeneous anisotropic
media. Its extension to the hybrid-dimensional Darcy flow model is proposed in [13] based upon the
following vector space of degrees of freedom:

Vp = {vk,vs,0, ER, K € M,;s € V, 0 € Fr}.

The degrees of freedom are exhibited in Figure 2 for a given cell K with one fracture face o in bold.

The matrix degrees of freedom are defined by the set of cells M and by the set of nodes V \ Vr
excluding the nodes at the matrix fracture interface I'. The fracture faces F1 and the fracture nodes
Vr are shared between the matrix and the fractures but the control volumes associated with these
degrees of freedom will belong to the fracture network (see Figure 3). The degrees of freedom at the
fracture intersection Y are defined by the set of nodes Vs, C Vr located on X. The set of nodes at
the Dirichlet boundaries 9Qp and 9T p is denoted by Vp.

The VAG scheme is a control volume scheme in the sense that it results, for each non Dirichlet
degree of freedom, in a molar or energy balance equation. The matrix diffusion tensor is assumed
to be cellwise constant and the tangential diffusion tensor in the fracture network is assumed to be
facewise constant. The two main ingredients are therefore the conservative fluxes and the control
volumes. The VAG matrix and fracture fluxes are exhibited in Figure 2. For up € Vp, the matrix
fluxes Fi ., (up) connect the cell K € M to the degrees of freedom located at the boundary of K,
namely v € Zx = Vg U (Fx N Fr). The fracture fluxes F,s(up) connect each fracture face o € Fr
to its nodes s € V,. The expression of the matrix (resp. the fracture) fluxes is linear and local to
the cell (resp. fracture face). More precisely, the matrix fluxes are given by

FK,V(“D) - Z T[?V/(UK - ul/’)u

VESK

with a symmetric positive definite transmissibility matrix Tk = (T[I/{,V,)(V,u’)EE «x2x depending only on
the cell K geometry (including the choices of x; and of x,,0 € F) and on the cell matrix diffusion
tensor. The fracture fluxes are given by

Fos(up) =Y T5% (uy — uy),

SEVU
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with a symmetric positive definite transmissibility matrix 7, = (T5%)(ss)ev, <1, depending only
on the fracture face o geometry (including the choice of x,) and on the fracture face width and
tangential diffusion tensor. Let us refer to [13] for a more detailed presentation and for the definition

of Ty and T,.

Figure 2: For a cell K and a fracture face o (in bold), examples of VAG degrees of freedom u, us,
Uy, Uy and VAG fluxes Fi,, Frs, Frg, Fys.

The construction of the control volumes at each degree of freedom is based on partitions of the
cells and of the fracture faces. These partitions are respectively denoted, for all K € M, by

?ZWKU U Wks |

s€Vir\(VpUVr)

and, for all o € Fr, by
=75 U U Zes
SEVU\VD

It is important to notice that in the usual case of cellwise constant rocktypes in the matrix and
facewise constant rocktypes in the fracture network, the implementation of the scheme does not
require to build explicitly the geometry of these partitions. In that case, it is sufficient to define the
matrix volume fractions

fwK _dx

GKs = fK dx

constrained to satisfy ax s > 0, and ZSGVK\(VDUVF) aks < 1, as well as the fracture volume fractions

_ o, dix dT( )

© [ di(x)

constrained to satisfy a,s > 0, and ZSQ/UWD Qs < 1, where we denote by dr(x) the 2 dimensional
Lebesgue measure on I'. Let us also set

,SGVK\(VDUVF),KGM,

EVU\VD,UEfF,

%

o = (1— osz/gbm dx for K € M,

SEVK\ VDUVF)
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and

ba=(1= Y ane) [ 0,00 (xdr(x) for o € T,

s€V-\Vp
as well as
ds= ) aKs/ dm(x)dx  forseV\ (VpUVp),
KeMs K
and

s = Z @U,S/Uqﬁf(x)df(x)dr(x) for s € Vr \ Vp,

0'6.7'—1“,5

which correspond to the porous volume distributed to the degrees of freedom excluding the Dirichlet
nodes. The rock complementary volumes in each control volume v € MU FrU(V\ Vp) are denoted
by ¢,.

As shown in [13], the flexibility in the choice of the control volumes is a crucial asset, compared
with usual CVFE approaches and allows to significantly improve the accuracy of the scheme when
the permeability field is highly heterogeneous. As exhibited in Figure 3, as opposed to usual CVFE
approaches, this flexibility allows to define the control volumes in the fractures with no contribution
from the matrix in order to avoid to enlarge artificially the flow path in the fractures.

o

Figure 3: Two cells K and L splitted by one fracture face o in red in the left figure. In the right
figure, example of control volumes at the two cells K and L, at the fracture face o, and at nodes
(the width of the fracture is enlarged in the right figure). The control volumes are chosen to avoid
to mix the fracture and matrix porous volumes.

In the following, we will keep the notation Fk s, Fg ., F,s for the VAG Darcy fluxes defined
with the cellwise constant matrix permeability K,, and the facewise constant fracture width d; and
tangential permeability K. Since the rock properties are fixed, the VAG Darcy fluxes transmissibility
matrices T and T, are computed only once.

The VAG Fourier fluxes are denoted in the following by Gk s, Gk, Gos. They are obtained with
the isotropic matrix and fracture thermal conductivities averaged in each cell and in each fracture
face using the previous time step fluid properties. Hence VAG Fourier fluxes transmissibility matrices
need to be recomputed at each time step.

3.2 VAG discretization of the hybrid-dimensional non-isothermal com-
positional model

The time integration is based on a fully implicit Euler scheme to avoid severe restrictions on the

time steps due to the small volumes and high velocities in the fractures. Note that the thermal

conductivities are discretized as mentioned above using the saturations at the previous time step. A
phase based upwind scheme is used for the approximation of the mobilities in the Darcy fluxes, that
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is to say the same scheme that is already used in the definition of the transmission conditions (15) of
the hybrid-dimensional model. At the matrix fracture interfaces, we avoid the mixing of the matrix
and fracture rocktypes in our choice of the control volumes for o € Fr and s € Vr (see Figure 3). To
avoid too small control volumes at the nodes s € Vs, located at the fracture intersection, the volume
is distributed to such a node s from all the fracture faces containing the node s. It results that the
volumes of the control volumes s € Vy, at the fracture intersection is not smaller than at any other
matrix fracture degrees of freedom. This solves the problems reported in [4] and [17] related to the
small volumes at the fracture intersections and avoid the Star-Delta transformation used in [4] which
is not valid in the case of multiphase flows.

For Ny € N*, let us consider the time discretization t* =0 < t! <--- <t" 1 <t?... <tV =T
of the time interval [0, T]. We denote the time steps by At" =" — "L for allm = 1,--- , Ny.

Let be given, for each degree of freedom v € M U Fr UV, the set of physical unknowns of the
Coats’ formulation

Xu == (Ple/aSga Cg,a S ani,uai S EQy?QV)'
We denote by Xp, the full set of unknowns

Xp={X,,v e MUF- UV}

We will use the notation QQp = (Qy, ve MUFr U V), and, for a given @), we denote by

XQ,/ = <P1/7Tl/7537 Cz?:a € Quani,wi € EQV)’

the set of physical unknowns excluding the set of present phases ),. Similarly, for a given QQp, we
set
XQD = {XQV,I/ S ./\/lUfFUV}.

We can clearly identify X, and (Xg,,Q,) as well as Xp and (X¢g,, @p).
The Darcy fluxes taking into account the gravity term are defined by

{ V@, (Xp) = Fk.(Pp) + p%,Fx.(Gp), v € Ex, K € M,

1
VO(Xp) = Fou(Pp) + p o Fus(Gp), S € Voo € Fr, (17)

where Gp denotes the vector (g-X,),emur-uy, and the phase mass density is defined by the weighted

average

a Sgpa(P,,, 1., Oz?) + Sg/pa<Pl/’v T, Oz?é’)
Prat = So + 53

The discretization of the mobilities is obtained using a usual phase based upwinding (see e.g. [37]).

For each Darcy flux, let us define the phase dependent upwind control volume cvy;,, such that

o K if V2, (Xp)=0
Yy = it VR, (Xp) <0

for K €e M,v € Eg,

for the matrix fluxes, and such that

. { o if VO(Xp) >0
(&) = )

75 =\ s if Va(Xp) <0 7 ETTsEVe

for fracture fluxes. Using this upwind discretization, the component molar fluxes are given by

G (Xp) = Y mi (X Vi (Xp)

QGQCUQ , r‘l’Pi
v,
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for i € C, and the energy fluxes by
Gewwr(Xp) = Y mE(Xewo )V (Xp) + G (Tp).

AEQ o IO'PZ'
v,v

Next, in each control volume v, let us denote by

-Ai,u(Xu) = ¢uni(XV)a ieC

the component molar accumulation, and by

Ae,u(Xu) - QbuE(Xz/) + éuEr(Py; TZ/)J

the energy accumulation.

We can now state the system of discrete equations at each time stepn = 1, - -+ , Ny which accounts
for the component and energy conservation equations i € C U {e} in each cell K € M
oy AXE) = A(XET) ny
Rii(Xp) = A + Z Gi,rc,s(Xp) Z Gi.x.0(Xp) =0, (18)
sEVK ocEFrNFi

in each fracture face o € Fr

n AZ X;'l — Al X;Lil n n
Ryo(Xp) o= AE) —AKTT) 5 b YT gk (X) =0, (19)

At
s€Vs KeM,

and at each node s € V\ Vp

Ai Xsn — AZ Xg_l n n
Ry (X} = (X5) Atn( ) 4 > —Gios(XP) + Y —gixs(Xp) =0. (20)

o€FTr,s KeMs

It is coupled with the local closure laws

() sem—1
acQy
0= LV(X;L) e Z Cz(:,‘{l;n - 17 OAS QZ? (21)
1€Ce
fa(P:7T177Can) _fB(Pth7T177Cﬁn)Ofun7
\ o £ 8, (0,8 € (@nP)icC,

the flash computations Q) = Qfasn(X])) for v € MU (V \ Vp) U Fr, and the Dirichlet boundary
conditions
Xs = Xs,D;

for all s € Vp.

3.3 Newton-Raphson non-linear solver

Let us denote by R, (Xp) the vector (Ryyi, ieC U{e}), and let us rewrite the conservation equations

(18), (19), (20) and the closure laws (21) as well as the boundary conditions in vector form defining
the following non-linear system at each time step n = 1,2, ..., Np

([ Ru(Xp)
Ly(X,) ) seV
0 = R(Xp) = i"gD; ) e P (22)
Ric( X
\ (LKéXK; ) KeM,



where the superscript n is dropped to simplify the notations and where the Dirichlet boundary
conditions have been included at each Dirichlet node s € Vp in order to obtain a system size
independent on the boundary conditions.

The non-linear system R(Xp) = 0 coupled to the flash fixed point equations @, = Q fiasn(Xy),
ve MUFrU(V\ Vp) is solved by an active set Newton-Raphson algorithm widely used in the
reservoir simulation Community [33] which is detailed below. The algorithm is initialized with an

initial guess X QD usually given by the prev1ous time step solution and computes the initial
residual R (X, QD, QD ) and its norm ||R(X, QD, QD )|| for a given weighted norm ||.|].

The Newton algorithm iterates on the following steps for r = 0,--- , until convergence of the
relative residual

IR(X, QD, 9l
(O) > €newton
IR(XS), QW]
for a given stopping criteria €,eyon Or until it reaches a maximum number of Newton steps N%%% .
1. Computation of the Jacobian matrix
OR
I = (X5, QF)).
0Xg, \ 927 TP
2. Solution of the linear system
0 axg) = -Rr(X5).Q%)). (23)

3. Update of the unknowns Xg; with a full Newton step ) = 1 or a possible relaxation (") €
(0,1).
r+3) _ () | ptr) v (™)
Xop ' =Xg, +07 dX,”.

4. Flash computations to update the sets of present phases ();, "+ The flash computations also

prov1de the molar fractions of the new sets of present phases. They are used together with
X0 (r+ ) and Q(TH to update the new set of unknowns X TH)

5. Computation of the new residual R(Xg;rl), g+1)) and of its norm.

If the Newton algorithm reaches the predefined maximum number of iterations before convergence,
then we restart this time step with a reduced At.

In view of the non-linear system (22), the size of the linear system for the computation of the
Newton step can be considerably reduced without fill-in by

e Step 1: elimination of the local closure laws (21),
e Step 2: elimination of the cell unknowns.

Step 2 is detailed in Section 4.2. The elimination of the local closure laws (Step 1) is achieved for
each control volume v € M U Fr UV by splitting the unknowns X, into #C + 1 primary unknowns
X¢, and N3 secondary unknowns X&' with

N*=14#Q,+ Y  #C*+#Cq, — #C.

OCEQU
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For each control volume v € M U Fr UV, the secondary unknowns are chosen in such a way that
the square matrix

oL - s sd g Nsd

oy (. X Q.) R,
is non-singular. This choice can be done algebraically in the general case, or defined once and for
all for each set of present phases @), for specific physical cases. Here we remark that the unknowns
(i) icC,, arenot involved in the closure laws (21) and hence are always chosen as primary unknowns.
The ill conditioned linear system obtained from (23) after the two elimination steps is solved
using an iterative solver such as GMRES or BiCGStab combined with a preconditioner adapted to
the elliptic or parabolic nature of the pressure unknown and to the coupling with the remaining
hyperbolic or parabolic unknowns. One of the most efficient preconditioners for such systems is
the so-called CPR-AMG preconditioner introduced in [35] and [36]. It combines multiplicatively
an algebraic multigrid preconditioner (AMG) for a pressure block of the linear system [39] with a
more local preconditioner for the full system, such as an incomplete LU factorization. The choice of
the pressure block is important for the efficiency of the CPR-AMG preconditioner. In the following
experiments we simply define the pressure equation in each control volume by the sum of the molar
conservation equations in the control volume. Let us refer to [35], [36], and [40] for a discussion on
other possible choices. Let us denote by Jz = b the linear system where J is the Jacobian matrix
and b the right hand side taking into account the elimination steps and the linear combinations of
the lines for the pressure block. The CPR-AMG preconditioner Pgpr_amg is defined for any vector b

by Pepr—amgh = v with

0% = R} Pamg(sp) RPb,
v=0"?+ Piruo (b — J’Ul/Q), (24)
where Pamg(s,) is the AMG preconditioner with Jp = RPJRITD, Pino is the ILU(0) preconditioner

applied on the Jacobian .J, Rp is the restriction matrix to the pressure unknowns and R}, is the
transpose of Rp.

4 Parallel implementation

Parallel implementation is achieved using the Message Passing Interface (MPI). Let us denote by N,
the number of MPI processes.

4.1 Mesh decomposition

The set of cells M is partitioned into N, subsets M?,p =1, ..., N, using the library METIS [41]. In
the current implementation, this partitioning is only based on the cell connectivity graph and does
not take into account the fracture faces. This will be investigated in the near future and the potential
gain is discussed in the numerical section. The partitioning of the set of nodes V and of the set of
fracture faces Jr is defined as follows: assuming we have defined a global index of the cells K € M
let us denote by K(s),s € V (resp. K(0), o0 € Fr) the cell with the smallest global index among
those of My (resp. M, ). Then we set

VP ={s€eV|K(s) e M},
and

Fr={o € Fr|K(oc) e M}
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The overlapping decomposition of M into the sets
W, p=1..Np,

is chosen in such a way that any compact finite volume scheme such as the VAG scheme can be
assembled locally on each process. Hence, as exhibited in Figure 4, M" is defined as the set of cells
sharing a node with a cell of MP. The overlapping decompositions of the set of nodes and of the set
of fracture faces follow from this definition:

KeM”
and o
Fr= U FxnF,p=1,-- N,
KeM?
M1 M2 M

Figure 4: Example of mesh decomposition.

The partitioning of the mesh is performed by the master process (process 1), and then, each local
mesh is distributed to its process. Therefore, each MPI process contains the local mesh (/\/lp, V'
Fr), p=1,2, ..., N, which is splitted into two parts:

own mesh: (MP, VP F),
ghOSt mesh: (mp\Mpv Vp\vp7 ?lz:\‘/—_?)

We now turn to the parallel implementation of the Jacobian system.

4.2 Parallelization of the Jacobian system

On each process p = 1,..., N, the local Jacobian system is defined by the set of unknowns X,,
v e V' UFp UM, the closure equations on control volume v € V' U Fp. U M" and the conservation
equations of all own nodes s € V?, all own fracture faces o0 € FF and all own and ghost cells k € M.

The local Jacobian system is firstly reduced by eliminating the local closure laws on each control
volume v € V"' U .7-"1; U M” using the procedure presented in Section 3.3. The local reduced Jacobian
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system can be written as the following rectangular linear system

poogE g vl =
Jre T e Ur) = 1%
Jg)s Jf f ch Uc blc)

where U" € R#V/*#CHD) U} € R#FIXHCHD) and U € R#M X#CHD denote the vector of own and
ghost primary unknowns Xg; at the nodes v € V, at the fracture faces v € .7-"7; and at the cells

ve M respectively on the process p. The above matrices have the following sizes
gp e (B xern) < (#"x @)
i, e R (#FEx@e+D) x (#F0x (#e+1)) ’
JP c R(#ﬂ”x(#czﬂ)) x (#MF x (#C+1))
and bP € RV X#CH ph ¢ R#TEXH#CHD) and b2 € R#M"x(#C+1) denote the corresponding right hand

side vectors. The matrix J? is a non singular diagonal matrix and the cell unknowns can be easily
eliminated without fill-in leading to the following Schur complement system

.
U
i (—5) — v, (25)
Uy
with
Je.JP JP
JP ::( > Sf) _( sc) (Jg;c)_l Jg)s Jf )
g i) =\ (e %)
i) - () o
= () - () o
(%)~ (G
and

Ue = (Jo) (82 — JoU, — J5UY). (26)
The linear system (25) is built locally on each process p and transfered to the parallel linear solver
library PETSc [42]. The parallel matrix and the parallel vector in PETSc are stored in a distributed

manner, i.e. each process stores its own rows. We construct the following parallel global linear
system

JU = b, (27)
with
JIR! } process 1
J?R? } process 2
JNe RNv } process N,
and
U,
Ul process 1
UJ; b\ } process 1
5 rocess 2 b? rocess 2
ve=|Ui|J? e | U H P
U}Vp bNe } process N,
U‘}p } process N,
f
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where RP,p = 1,2, ..., N, is a restriction matrix satisfying
Up
RPU = b |-
(U”)

and the vector bP are stored in process p.

5
(v
The linear system (27) is solved using the GMRES algorithm preconditioned by CPR-AMG

preconditioner as discussed in the previous section. The solution of the linear system provides
p

P
— Y —
ghost node unknowns U?, v € (V'\VP) and the ghost fracture face unknowns U?, v € (Fp.\FP) are

recovered by a synchronization step with MPI communications. This synchronization is efficiently
implemented using a PETSc matrix vector product

The matrix JPRP, the vector

on each process p the solution vector < ) of own node and fracture-face unknowns. Then, the

U=SU (28)

where

is the vector of own and ghost node and fracture-face unknowns on all processes. The matrix S,
containing only 0 and 1 entries, is assembled once and for all at the beginning of the simulation.

Finally, thanks to (26), the vector of own and ghost cell unknowns Uﬁ is computed locally on
each process p.

5 Numerical results

The numerical tests are all implemented in the framework of the code ComPASS on the cluster
“cicada” hosted by University Nice Sophia-Antipolis consisting of 72 nodes (16 cores/node, Intel
Sandy Bridge E5-2670, 64GB/node). We always fix 1 core per process and 16 processes per node.
The communications are handled by OpenMPI 1.8.2 (GCC 4.9).

Five test cases are considered in the following subsections. They include a two-phase immiscible
isothermal Darcy flow model, a two-phase isothermal Black Oil model and a non-isothermal liquid
gas flow model. Different types of meshes namely hexahedral, tetrahedral, prismatic and Cartesian
meshes are used in these simulations.

The settings of the nonlinear Newton and linear GMRES solvers are defined by their maximum
number of iterations denoted by Npiih  and NZU® - and by their stopping criteria on the relative
residuals denoted by €pewton and €gmres-

The time stepping is defined by an initial time step At(® and by a maximum time step At*) on
each time interval [t®) t*+D) k=0, k; — 1 with ¢ = 0 and t*/) = ¢;, where t; is the final
simulation time. The successive time steps are computed using the following rules. If the Newton
algorithm reaches convergence in less than N9 iterations at time step n with ¢* € [t ¢(k+1)
then the next time step At"*! is set to

A" = min(cAt", At®)), ¢ =1.2. (29)
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If the Newton algorithm does not converge in N"%% iterations or if the linear solver does not reach

convergence in NgZi% - iterations, then the time step is chopped by a factor two and restarted.
In all the following numerical experiments, the relative permeabilities are given by the Corey laws

k2(S) = (S*)? for both phases o € P and both in the matrix domain and in the fracture network.

5.1 Two-phase immiscible isothermal flow

In this subsection, we consider an immiscible isothermal two-phase Darcy flow with P = {water, oil}
the set of phases and C = {H,O, HC} the set of components. The model prescribes the mass
conservation and we set p“®¢" = 1000 kg/m? and p°? = 700 kg/m?. The phase viscosities are set to
prter = 1072 Pa-s and p°? = 5.0 x 1072 Pa - s.

The reservoir domain is defined by Q = (0,100)? in meter. We consider a topologically Cartesian
mesh of size n, xn, xn, of the domain 2. The mesh is exhibited in Figure 5 for n, = 16. The mesh is
exponentially refined at the interface between the matrix domain and the fracture network as shown
in Figure 5. The width of the fractures is fixed to dy = 0.01 meter. The permeabilities are isotropic
and set to A,, = 107 m? in the matrix domain and to A; = 107" m? in the fracture network. The
porosities in the matrix domain and in the fractures are ¢,, = 0.1 and ¢ = 0.5 respectively.

The reservoir is initially saturated with water and oil is injected at the bottom boundaries of
the matrix domain and of the fracture network. The oil phase rises by gravity in the matrix and
in the fracture network. The lateral boundaries are considered impervious. The initial pressure is
hydrostatic with P = 2 MPa at the bottom boundaries and P =1 MPa at the top boundaries.

The linear and nonlinear solver parameters are fixed to NJ%%% | = 35, NJ2% = 150, €gmpes = 1074,
€newton = 107°, and the time stepping parameters are fixed to t; = 10000 days, At = 5 days,
At =5 days, At = 15 days, tH = 100 days, k; = 2.

Figure 6 exhibits the oil saturation obtained with the mesh size n, = 128 at times ¢ = 2500, 5000, 7500
days and at the final time ¢; = 10000 days.

Figure 5: Hexahedral mesh of the matrix domain (left) conforming to the fracture network (right)
obtained with n, = 16.

Table 2 clearly shows that both the total numbers of Newton iterations and of linear solver
iterations are almost independent on the number of MPI processes. The Newton solver requires an
average of 2.6 iterations per time step and the GMRES linear solver converges in an average of 40
iterations. These results are very good given the mesh size combined with the large constrast of
permeabilities and of space and time scales between the fracture network and the matrix.

Figure 7 presents the total computation times in hours for different number of MPI processes
N, = 16,32,64,128. The scalability behaves as expected for fully implicit time integration and
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Table 1: Maximum/mean number of own cells, own cells+nodes+iracture faces and own
nodes-+fracture faces by process for the hexahedral mesh with n, = 128 and NV, = 64, 128.

N, 64 128
own cells 32768/32768 | 16385/16384
own cells+nodes+fracture faces | 68985/67126 | 34831/33563
own nodes-fracture faces 36217/34358 | 18447/17179
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Figure 6: Saturation of oil in the fractures and in the matrix domain at different times (in days)

for the hexahedral mesh with n, = 128. A threshold of 0.2 is used for the saturation in the matrix
domain.

Table 2: Number of time steps (Nimestep), total number of Newton iterations (Nyewton) and total
number of linear solver iterations (Ngmyes) vs. number of MPI processes for the two-phase immiscible
isothermal flow test case with the hexahedral mesh obtained for n, = 128.

N, 16 32 64 128
Ntimestep 683 683 683 683
Npewton 1743 | 1742 | 1745 | 1741
Nymres 68779 | 69015 | 68927 | 69070
Nycwton/Ntimestep | 2.6 2.6 2.6 2.5
Nymres/ Nnewton 39.5 39.6 | 39.5 39.7
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AMG type preconditioners. It is well known that the AMG preconditioner requires a sufficient
number of unknowns per MPI process, say 100000 as classical order of magnitude, to achieve a linear
strong scaling. For this mesh size, leading to roughly 2 x 10°® unknowns for the pressure block,
the scalability is still not far from linear on up to 64 processes and then degrades more rapidly for
N, = 128. Table 1 shows that the partitioning could be improved by using a weighted graph taking
into account the fracture faces. Nevertheless, for this test case, the potential gain seems rather
small compared with the loss of parallel efficiency exhibited in Figure 7 which is mainly due to the
communication overhead.

2 x 10* : :
—e Total time
-=-+ Linear speedup
1x10'}
v
=}
o
<
0]
£ "
[ .
1x10°

16 32 64 128
Number of MPI processes

Figure 7: Total computation time vs. number of MPI processes for the two-phase immiscible isother-
mal flow test case with the hexahedral mesh obtained for n, = 128.

5.2 Black Oil model
5.2.1 Oil migration

This test case considers a Black Oil model with two components C = {H,O, HC'} and two phases
P = {water,oil}. The HC component can dissolve in the water phase defined as a mixture of HC
and H,O while the oil phase contains only the HC' component. The viscosities of the water and oil
phases are the same as in the previous test case. The mass densities are defined by

P =990 x (14 CHE) kg/m?, p = 700 kg/m®.

The fugacity coeflicients fg.(P,T,C?%),a € P are defined by
water __ 1’

HC
, P-P_  P-P_
IOJC = C1 + Co,
P - PR P —-P

with P, =1 MPa, P, =2 MPa, and ¢, = 5 x 1073, &, = 1072,

The reservoir is the cubic domain Q = (0,100)? in meter and the width of the fractures is fixed to
dy = 0.01 meter. We consider a tetrahedral mesh conforming to the fracture network as exhibited in
Figure 8 for a coarse mesh. The mesh used in this subsection contains about 6.2 x 106 cells, 9.7 x 10°
nodes and 7.1 x 10* fracture faces. The permeabilities are isotropic and fixed to A,, = 107! m?
in the matrix domain and to Ay = 107'' m? in the fracture network. The porosities in the matrix
domain and in the fractures are ¢,, = 0.1 and ¢; = 0.5 respectively.
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As in the previous test case, the reservoir is initially saturated with pure water and oil is injected
at the bottom boundaries of the matrix domain and of the fracture network. The initial pressure is
hydrostatic with P = 2 MPa at the bottom boundaries and P = 1 MPa at the top boundaries.

The linear and nonlinear solver parameters are fixed to N;ei%,, = 35, Noiv o = 200, €gmres = 1074,
€newton = 107°, and the time stepping parameters are fixed to t; = 10000 days, At = 0.5 days,
At = 2 days, At® = 50 days, At®) = 100 days, t1) = 180 days, t® = 2000 days, k; = 3.

Figure 9 and Figure 10 present the oil saturation and the molar fraction of the HC' component in
the water phase both in the fractures and in the matrix domain at times ¢ = 2500, 5000, 7500, 10000

days.
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Figure 8: Example of tetrahedral mesh of the matrix domain (left) conforming to the fracture network
(right).

Table 3: Maximum/mean number of own cells, own cells+nodes+iracture faces and own
nodes—+racture faces by process for the tetrahedral mesh with 6.2 x 10° cells and N, = 64,128.

N, 64 128
own cells 96518/96517 | 48260/48258
own cells+nodes+fracture faces | 114898/112762 | 58063 /56381
own nodes—+fracture faces 18381/16246 9804/8123

As in the previous test case, table 4 exhibits that both the total numbers of Newton iterations
and of linear solver iterations are almost independent on the number of MPI processes. The average
number of Newton iteration is 8.8 per time step. This is a significant increase compared with the
previous test case which is due to the phase appearance and disappearance in the Black oil model
combined with large contrasts of permeabilities and space and time scales between the matrix and
the fractures. On the other hand, the average number of linear solver iterations is roughly 30 per
Newton step which is even better than in the previous test case.

Figure 11 exhibits the total simulation times as a function of the number of MPI processes. The
results are similar than in the previous test case. The scalability is very good up to 32 MPI processes
and degrades for N, = 64 and 128 as expected for a number of unknowns in the pressure block
roughly equal to 10°. Table 3 shows the maximum and mean number of own d.o.f. by process for
N, = 64,128 with a larger disbalance for own nodes + fracture faces than in the previous test case
but still quite smaller than the loss of parallel efficiency exhibited in Figure 11 which is mainly due
to the communication overhead.
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Figure 9: Oil saturation in the fractures and in the matrix domain at different times (in days) for
the tetrahedral mesh. A threshold of 0.2 is used for the saturation in the matrix domain.
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Figure 10: Molar fraction of the HC' component in the water phase in the fractures and in the matrix

domain at different times (in days) for the tetrahedral mesh. A threshold of 0.001 is used for the
saturation in the matrix domain.
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Table 4: Number of time steps (Nimestep), total number of Newton iterations (Nyewton) and total

number of linear solver iterations (Ngpes) vs. number of MPI processes for the black oil model test
case with 6.2 x 10% tetrahedral cells.

N, 8 16 32 64 128
Niimeste 249 | 248 | 239 | 246 | 243
Noowion 2182 | 2178 | 2115 | 2151 | 2135
Nymres 64340 | 64567 | 64649 | 64039 | 63277

Nyewton/Nimestep | 88 | 88 | 88 | 87 | 88

Nymres/Npewton | 295 | 29.6 | 30.6 | 29.8 | 29.6
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Figure 11: Total computation time vs. number of MPI processes for the black oil model test case
with tetrahedral mesh.
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5.2.2 Water injection

We modify the previous test case using the new fracture width dy = 0.001 meter and injecting
pure water instead of oil at the bottom boundary with a bottom pressure of 3 MPa. The relative
permeabilities are modified using a residual water saturation S} = 0.2 and the initial water saturation
is fixed to S* = §.  The time stepping parameters are fixed to ¢ty = 5000 days, At =0.001 days,
At = 30 days, At® =100 days, At® = 30 days, t(!) = 600 days, t? = 2000 days, k; = 3.
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Figure 12: Water saturation at time ¢ in the matrix (left figure with a threshold of S* = 0.3) and
in the fractures (right) for the Black oil test case with water injection.

Table 5: Number of time steps (Niimestep), total number of Newton iterations (Nyewton) and total
number of linear solver iterations (Ngmres) vs. number of MPI processes / mesh size for the water
injection black oil model test case.

N, / nb of cells

16/1.17 x 10°

32/2.03 x 10°

64/4.11 x 10°

Ntimestep
Nnewton

Ngmres
CPU time (s)
CPU time / Nymyres

187
633
8841
1213
0.137

187
647
10168
1424
0.140

190
688
12889
1940
0.151

In order to investigate the weak scalability of the code, Table 5 exhibits the numerical behavior
of the simulation obtained for this test case using tetrahedral meshes with 1.17 x 106, 2.03 x 10°,
4.11 x 10 cells on respectively N, = 16,32, 64 processes. The number of Newton iterations as well
as the total number of GMRES iterations increase only moderately with the mesh size. The CPU
time per GMRES iteration exhibits a good weak scalability for IV, = 16, 32, 64 processes.
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5.3 Non-isothermal liquid-gas simulation with a large discrete fault net-
work

We consider in this subsection a single HoO component liquid-gas non-isothermal model with P =
{water, gas} and C = {H0}. The thermodynamical laws providing the phase molar densities,
viscosities, internal energies, and enthalpies as well as the saturation vapor pressure are obtained
from [43]. The thermal conductivity is fixed to A =2 W m™ K~! and the rock volumetric internal
energy is defined by E,.(T) = ¢, T with ¢, = 16.10° J m~* K~'. The gravity is not considered in this
test case which means that the solution is 2 dimensional.

The fault network is provided by M. Karimi-Fard and A. Lapéne from Stanford University and
TOTAL as well as the prismatic mesh of the domain 2 = (0,5888) x (0,3157) x (0,200) (meters)
which contains about 1.3 x 10° prismatic cells, 3.4 x 10 nodes and 7.1 x 10° fault faces. The 3D
mesh is defined by the tensor product of a triangular 2D mesh with a uniform vertical 1D mesh
with 10 intervals. The fault network contains 581 connected components. The fault width is set to
d; =1 m and the permeabilities are isotropic and fixed to A,, = 107'* m? in the matrix domain and
to Ay = 1072 m? in the fault network. The porosities in the matrix domain and in the faults are
¢m = 0.1 and ¢ = 0.1 respectively.
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Figure 13: Horizontal view of the prismatic mesh of the matrix domain coarsened by a factor 2 in
the x,y directions (left) conforming to the fault network (right).

Table 6: Maximum/mean number of own cells, own cells+nodes+fracture faces and own
nodes—+fracture faces by process for the prismatic mesh with 1.3 x 10° cells and N,, = 64, 128.

N, 64 128
own cells 20214/20212 | 10107/10106
own cells+nodes+fracture faces | 33767/33016 | 17010/16508
own nodes—+fracture faces 13554/12803 | 6903/6401

Let us set Ipupur = {(2,y,2) € Q| x =0} and I'yppue = {(2, 9, 2) € Q| x = 5888}. The simulation
domain is initially in liquid phase with P = 1 MPa and 7" = 450 K. Dirichlet boundary conditions
are imposed at T'oyipye with P = 1 MPa and 7" = 450 K (liquid phase) and at I';,,, with P = 2
MPa and T' = 550 K (gas phase). The remaining boundaries are considered impervious to mass and
energy.

The linear and nonlinear solver parameters are fixed to N;i%,, = 50, Ngiiv - = 300, €gmres = 1074,
€newton = 1079, and the time stepping parameters are fixed to ¢; = 280000 days, At = 1000 days,
At = 10000 days, k; = 1.

Figures 14 and 15 exhibit the temperature and the gas saturation at different times. Table 7 shows
the total number of Newton iterations and the total number of linear solver iterations which are, as
for the previous test cases, almost independent on the number of MPI processes NV, = 32, 64, 128, 256.
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Figure 14: Temperature in the matrix domain for the non-isothermal test case on the prismatic mesh.
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Figure 15: Gas saturation in the matrix domain for the non-isothermal test case on the prismatic

mesh.
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The average number of Newton iterations per time step is 20. This is a high value but typical for
such non-isothermal flows combining high non linearities in the thermodynamical laws and highly
contrasted matrix and fault properties and scales. On the other hand, the number of linear solver
iterations, roughly 60 per Newton step, remains very good. Simarly as in the previous test cases,
the scalability of the total simulation time with respect to the number of MPI processes presented in
Figure 16 is very good from 32 to 64 processes and then degrades for N, = 128 and 256 due to a too
small number of unknowns in the pressure block per MPI process. Table 6 shows the maximum and
mean number of own d.o.f. by process for N, = 64,128 with similar conclusions as in the previous

test cases.

Table 7: Number of time steps (Nimestep), total number of Newton iterations (Nyewton) and total
number of linear solver iterations (Ngmyes) vs. number of MPI processes for the non-isothermal test

case on the prismatic mesh.

N, 32 64 128 256
Niimestep 300 318 303 289
Nyewton 9890 6012 5946 o885

Nymres 372671 | 370954 | 383523 | 391250
Noewton/Ntimestep | 19.6 18.9 19.6 20.4
Nymres/ Nnewton 63.3 61.7 64.5 66.5
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Figure 16: Total computation time vs. number of MPI processes for the non-isothermal test case on

the prismatic mesh.

5.4 Thermal convection test case with Cartesian mesh

This test case considers the same physical two-phase non-isothermal model as in the previous sub-
section but including gravity. The simulation domain is Q = (0,3000)® in meters. The mesh is a 3D
uniform Cartesian mesh which contains 240° cells. The fault network is defined by

I'={(z,y,2) € Q| z = 1500 or y = 1500 and 500 < z < 2500},

with fault width fixed to dy = 1 meter. The permeabilities are isotropic and set to A, = 107" m? in
the matrix domain and to Ay = 107'? m? in the fault network. The porosities in the matrix domain
and in the faults are ¢, = 0.1 and ¢ = 0.5 respectively.

30



The domain is initially in liquid phase with a fixed temperature 293 K and an hydrostatic pressure
defined by its value P = 1 bar at the top boundary. The temperature is fixed to 623 K (liquid phase)
at the bottom boundary which is impervious to mass. At the top boundary, the pressure is set to
1 bar and the temperature to 293 K (liquid phase). A zero flux for both mass and temperature is
imposed at the lateral boundaries of the domain.

The linear and nonlinear solver parameters are fixed to Ny, = 25, Ngov o= 300, €gmpes = 1074,
€newton = 107°, and the time stepping parameters are fixed to t; = 2 x 107 days, At()) = 5 x 10° days,
At) = 5x10° days, At®) = 10° days, At®) = 5x103 days, t() = 2.5x10° days, t® = 1.7x107 days,
k= 3.

Figure 17 shows the temperature in the faults and in the matrix domain at times ¢ = 1 x 107
days and t = t;. In addition, we present in Figure 18 the gas saturation at final time.
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(b) t =2 x 107 days
Figure 17: Temperature in the faults and in the matrix domain at different times (days).
In this test case, the thermal convection leads to convective instabilities which are triggered by the

numerical round-off errors. Hence it is not appropriate to make scalability tests since the solution
will depend on the number of MPI processes. Therefore, we only exhibit in Table 8 the results
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Figure 18: Saturation of gas in the matrix domain at the final time t; = 2 x 107 days.

obtained for N, = 256. This simulation lasts 40.57 hours. The convective instabilities and strong
nonlinearities require a small time step in order to obtain Newton’s convergence, especially at the
end of the simulation when the gas phase appears.

Table 8: Number of time steps (NVimestep), total number of Newton iterations (Npewton) and total
number of linear solver iterations (N,res) for the thermal convection test case on the Cartesian mesh
where N, = 256.

Ntimest@p 3117
N, newton 6712
Nymres 238600
Nnewton /Ntimestep 2 . 2
Nymres/Nnewton 35.5

5.5 Thermal convection test case with tetrahedral mesh

This last test case considers the same physical two-phase non-isothermal model as in the previous
subsection, but with the tetrahedral mesh shown in Figure 8 and rescaled to a larger domain ) =
(0,3000)? in meters. The fault width is fixed to dy = 1 meter. The permeabilities are isotropic and
set to A, = 107 m? in the matrix domain and to Ay = 1072 m? in the fault network. The porosity
in the matrix domain is set to ¢, = 0.25, and to ¢, = 0.35 in the fault network.

At the intersection {z = 0} NI of the bottom boundary with the fault network, the temperature
is fixed to 623 K and a mass flow rate of 100 kg/s is uniformly prescribed. At the matrix bottom
boundary, the temperature is set as 473 K and the mass flow rate is set to zero. At the top boundary,
the pressure is set to 10° Pa and the temperature to 293 K (liquid phase). A zero flux for both mass
and temperature is imposed at the lateral boundaries of the domain. The simulation domain is
initially in liquid phase with an hydrostatic pressure defined by the pressure boundary condition at
the top boundary and with a linear temperature between 293K at the top boundary and 473K at
the bottom boundary.

We set the linear and nonlinear solver parameters to Nje: = 30, NJ'% = 150, €gmpes = 107°,

€newton = 1079, and the time stepping parameters are fixed to t; = 2 x 10° days, At® = 50 days,
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At = 1000 days, At® = 50 days, t() = 5.8 x 10* days, k; = 2.
Figure 19 exhibits the temperature in the faults (left) and the gas saturation in the faults and in
the matrix domain (right) at times ¢ = 7 x 10* days and t = ¢;.
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Figure 19: Left: temperature in the faults at different times (days). Right: saturation of gas in the
faults and in the matrix domain at different times (days) where a threshold of 0.0001 is used on the
matrix domain.

Table 9 shows the total number of Newton iterations and the total number of linear solver
iterations. We present the total computation time in hours for different number of MPI processes
N, = 16, 32,64, 128 in Figure 20. The scalability is similar to the one obtained with the black oil
model test case using the same tetrahedral mesh as shown in Figure 11.

6 Conclusion

In this paper, a discrete fracture model accounting for non-isothermal compositional multiphase
Darcy flows was introduced. The geometry takes into account complex networks of intersecting,
immersed or non immersed planar fractures. The physical model accounts for an arbitrary nonzero
number of components in each phase allowing to model immiscible, partially miscible or fully mis-
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Table 9: Number of time steps (Nimestep), total number of Newton iterations (Nyewton) and total
number of linear solver iterations (Ngmyes) vs. number of MPI processes for the thermal convection

test case with tetrahedral mesh.

N, 16 32 64 128
Niimestep 2939 2946 2950 2946
Nyewton 10043 10259 | 10352 10074
Nymres 151993 | 155925 | 158124 | 153836

Newton/ Ntimestep 3.4 3.5 3.5 3.4
Nsower / Nnewton 15.1 15.2 15.3 15.3
4 x10* : :
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Figure 20: Total computation time vs. number of MPI processes for the thermal convection test

with tetrahedral mesh.
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cible flows. The discretization is based on the VAG finite volume scheme adapted to unstructured
polyhedral meshes and to anisotropic heterogeneous media. The time integration is fully implicit in
order to avoid strong restrictions on the time step due to the high velocities and small volumes in the
fractures. The discrete model is implemented in parallel based on the SPMD paradigm and using
one layer of ghost cells in order to assemble the systems locally on each processor. The CPR-AMG
preconditioner was investigated to deal with non-isothermal models.

The numerical results exhibit the ability of our discrete model to combine complex physics includ-
ing non-isothermal flows, thermodynamical equilibrium and buoyancy forces with fracture networks
including highly contrasted matrix fracture permeabilities. The parallel scalability requires, as ex-
pected for fully implicit discretizations when using AMG type preconditioners, that the number of
degrees of freedom per processor is kept high enough.
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