20 research outputs found

    Engineering restoration and gaseous carbon uptake on a degraded bog: the role of Eriophorum angustifolium and micropropagated Sphagnum

    Get PDF
    Degraded peatlands are significant sources of carbon greenhouse gases (CGHG), and their recovery can make significant contributions to climate change mitigation as well as deliver biodiversity benefits. Sphagnum mosses are key species for northern peatland formation and re-introduction is often needed for successful ecohydrological restoration of degraded bogs, but natural sources are scarce and often protected. Micropropagated Sphagnum moss products (BeadaMoss®) were developed to alleviate this constraint. This research explored in detail, for the first time, the CGHG fluxes on a cut-over lowland peatland restoration site where micropropagated Sphagnum was introduced to an existing ‘nurse crop’ of Eriophorum angustifolium, and tested the influence of vegetation maturity. Ecosystem CGHG flux was measured using closed chambers at plot scale in areas of both mature and immature E. angustifolium with and without application of BeadaGel™ Sphagnum, with control plots on bare peat. Studies were conducted over two years of contrasting weather patterns. In Year 1, mean net (CO2e) CGHG uptake on vegetated plots was -2.33 (minimum 1.55, maximum -5.55) t ha-1 yr-1 with increasing CGHG uptake as vegetation matured. In Year 2, gross photosynthesis reduced significantly during the 2018 summer drought resulting in a small mean net CGHG emission of 0.11 (minimum 2.21 maximum -1.22) t ha-1 yr-1 . Sphagnum application within immature vegetation resulted in greater CGHG uptake in both years, but was not as beneficial within mature vegetation. CGHG emission from bare peat (3.79 t ha-1 yr-1 overall) showed the magnitude of avoided losses. Methane flux contributed significantly to CGHG emission but was not closely related to water table depth. Application of Sphagnum within E. angustifolium can deliver good CGHG flux results in the early stages of degraded lowland bog recovery but cannot fully mitigate vulnerability to climate change scenarios

    Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants

    Get PDF
    Deposition of reactive nitrogen derived from intensive agriculture and industrial processes is a major threat to biodiversity and ecosystem services around the world; however our knowledge of the impacts of nitrogen is restricted to a very limited range of organisms. Here we examine the response of groups of microfauna (testate amoebae), mesofauna (enchytraeid worms) and plants to ammonium nitrate application in the Ruabon heathland long-term experiment. Plant data showed significant differences between treatments, particularly characterised by a loss of bryophytes in nitrogen-treated plots, by contrast enchytraeids showed a non-significant increase in abundance in response to treatment. Testate amoebae showed no significant changes in abundance or inferred biomass but significant changes in community structure with a reduced abundance of Corythion dubium, interpreted as a response to the loss of bryophytes. Our results suggest that simple indices of plant community may have value for bioindication while the bioindication value of testate amoebae and enchytraeids is not clearly demonstrated

    The effect of exposure to NO2 and SO2 on frost hardiness in Calluna vulgaris

    No full text
    Heather (Calluna vulgaris) was grown in pots in a natural heathland soil and exposed in outdoor fumigation chambers (‘solardomes’) to 40 nl l−1 of both nitrogen dioxide (NO2) and sulphur dioxide (SO2) simultaneously. Plants exposed to NO2 and SO2 for 8 months over a growing season (February–November) showed increases in the growth of shoots (+37%) and the whole plant (+15%) and a raised ratio of root to shoot dry matter in comparison with control (charcoal-filtered air) plants. Fumigation raised the average foliar concentrations of nitrogen (+34%) and sulphur (+173%). The improvements in growth due to pollutant exposure were countered by reductions in tolerance to experimental acute frost. Cellular damage of heather shoots was assessed using measurements of electrolyte leakage from cut shoots following controlled over-night frosts. The rates of leakage were consistently increased in those plants that had been exposed to NO2 and SO2 for 5 months or more in comparison with non-fumigated controls. In some cases a greater leakage rate was recorded in fumigated plants than in controls even in the absence of freezing temperatures. The pollutants caused a similar reduction in frost tolerance whether exposure was given during the hardening period (August–January) or the de-hardening stage (November–April). These results support the hypothesis that low concentrations of air pollutants can reduce the tolerance of plants to freezing stress

    Impacts and indicators of nitrogen deposition in moorlands: Results from a national pollution gradient study

    No full text
    Damage to terrestrial ecosystems from long-term atmospheric nitrogen pollution is a key conservation challenge in many industrialized countries. An important research and management priority is the identification of bioindicators to allow pollution exposure and ecological impacts to be determined at an individual site. We evaluate the impacts of nitrogen (N) deposition and identify methods with bioindication potential across a national-scale pollutant deposition gradient for British heather moorlands. Nitrogen deposition is associated with distinct changes in plant community structure, including reduced bryophyte and vascular plant species richness, and changes in the frequency of many species. Notable results include positive correlation with nitrogen for the invasive bryophyte Campylopus introflexus and negative correlation for the pollution-sensitive Hylocomium splendens and Pleurozium schreberi. Higher nitrogen deposition is associated with increased plant foliar N in a dwarf shrub and a bryophyte, increased extractable litter N, and reduced activity of the enzyme phenol oxidase. Although gradient study results cannot prove causation it is clear that Nitrogen deposition exerts a widespread impact on the ecology and biogeochemistry of heather moorlands. Bioindicators can be used to evaluate exposure and impacts, a promising approach could combine plant species richness and litter nitrogen analyses

    Effects of long-term exposure to elevated CO2 and increased nutrient supply on bracken (Pteridium aquilinum)

    No full text
    1. Bracken (Pteridium aquilinum) is an important fern with a global distribution. Little is known of the response of this species to elevated CO2. We investigated the effects of high CO2 (570 compared with 370 μmol mol1) with and without an increased nutrient supply (a combined N, P, K application) on the growth and physiology of bracken, growing in containers in controlled-environment glasshouses, over two full growing seasons. Results of growth and physiology determinations are reported for the second season. 2. Elevated CO2 had little impact on the growth or allocation of dry mass in bracken. No significant changes were detected in dry mass of the total plant or any of the organs: rhizomes, roots and fronds. In contrast to the small effects of high CO2, the high nutrient treatment caused a three-fold stimulation of total plant dry mass and an increase in the allocation of dry mass to above ground when compared with low nutrient controls. 3. Net photosynthetic rates in saturating light were increased by both high CO2 and nutrient treatments, particularly in spring months (May and June). Growth in elevated CO2 did not cause a down-regulation in light-saturated rates of photosynthesis. The increased carbon gain in the high CO2 treatments was accompanied, in the low-nutrient plants, by higher concentrations of carbohydrates. However, in high-nutrient plants the CO2 treatment did not cause an accumulation of carbohydrates. The absence of a growth response to elevated CO2 in bracken despite significant increases in photosynthesis requires further investigation

    The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition

    No full text
    Regular applications of ammonium nitrate (35–140 kg N ha−1 year−1) and ammonium sulphate (140 kg N ha−1 year−1) to areas of acidic and calcareous grassland in the Derbyshire Peak District over a period of 6 years, have resulted in significant losses in both overall plant cover, and the abundance of individual species, associated with clear and dose-related increases in shoot nitrogen content. No overall growth response to nitrogen treatment was seen at any stage in the experiment. Phosphorus additions to the calcareous plots did however lead to significant increases in plant cover and total biomass, indicative of phosphorus limitation in this system. Clear and dose-related increases in soil nitrogen mineralization rates were also obtained, consistent with marked effects of the nitrogen additions on soil processes. High nitrification rates were seen on the calcareous plots, and this process was associated with significant acidification of the 140 kg N ha−1 year−1 treatments

    The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain

    No full text
    Regular (monthly) additions of NH4NO3 (4–12 g N m2 yr1) were made over a period of 8 yr (1989–98) to areas of moorland in North Wales dominated by the ericaceous shrub Calluna vulgaris. Results from the early stages of the experiment (1990–94) have shown marked and dose-related increases in shoot extension and canopy height in response to the nitrogen treatments, with significantly higher shoot nitrogen contents. The nitrogen-related stimulation in the growth of the C. vulgaris canopy over this period has resulted in large accumulations of litter on the high-nitrogen-treated plots (6.6 kg m2 in plots treated with 12 g N m2 yr1, compared with 3.8 kg m2 for the water controls). Litter nitrogen concentrations were also significantly increased at the higher rates of nitrogen addition, leading to a doubling of the total return of nitrogen to the litter layer over the experimental period. These changes in vegetation structure were associated with large reductions in the abundance of the bryophyte and lichen species normally present under the untreated canopy. Results since 1994, however, show little increase in shoot extension in response to the nitrogen treatments, with no clear dose response to increasing levels of addition. These findings are associated with a dose-related increase in the susceptibility of the nitrogen-treated areas of the C. vulgaris canopy to late winter injury, characterized as browning of the shoot tips in early to late spring. These results indicate that deleterious effects are now accumulating as a result of the long-term addition of nitrogen to these moorland plots
    corecore