302 research outputs found

    Immersed membrane bioreactors for produced water treatment

    Get PDF
    The performance of a submerged membrane bioreactor for the duty of gas field produced water treatment was appraised. The system was operated under steady state conditions at a range of mixed liquor suspended solids (MLSS) concentrations and treatment and membrane performance examined. Organics removal (COD and TOC) display removal rates between 90 and 97%. Removal of specific target compounds Benzene, Toulene, Ethylbenzene and Xylene were removed to above 99% in liquid phase with loss to atmosphere between 0.3 and 1%. Comparison of fouling rates at a number of imposed fluxes has been made between long term filtration trials and short term tests using the flux step method. Produced water fed biomass displays a greater fouling propensity than municipal wastewater fed biomass from previous studies. Results indicate an exponential relationship between fouling rate and flux for both long and short term trials, although the value was an order of magnitude lower during long term tests. Moreover, operation during long term trials is characterised by a period of pseudo stable operation followed by a catastrophic rise in TMP at a given critical filtration time (tfi, ) during trials at 6 g. L"1. This time of stable operation, tfit, is characterised by a linear relationship between fouling rate and flux. Results have been compared with the literature. Data for membrane fouling prior to the end of t fit yielded a poor fit with a recently proposed model. Trends recorded at t> trlt revealed the fouling rate to follow no definable trend with flux. The system showed resilience to free oil shocking up to an oil concentration of 200ppmv. Following an increase in oil concentration to 500 ppmv, rapid and exponential fouling ensued.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle

    Get PDF
    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs

    Identification of the Visceral Pain Pathway Activated by Noxious Colorectal Distension in Mice

    Get PDF
    In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100–120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2–5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9–15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30–75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibers to the spinal cord. The sensory neurons of this spinal afferent pathway lie primarily in the lumbosacral region of the spinal cord, between L6 and S1

    Conscious voiding during bladder obstruction in guinea pigs correlates with contractile activity of isolated bladders

    Get PDF
    © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Following 12 month embargo from date of publication (10 August 2015) in accordance with publisher copyright policy

    An experimental method to identify neurogenic and myogenic active mechanical states of intestinal motility

    Get PDF
    Excitatory and inhibitory enteric neural input to intestinal muscle acting on ongoing myogenic activity determines the rich repertoire of motor patterns involved in digestive function. The enteric neural activity cannot yet be established during movement of intact intestine in vivo or in vitro. We propose the hypothesis that is possible to deduce indirectly, but reliably, the state of activation of the enteric neural input to the muscle from measurements of the mechanical state of the intestinal muscle. The fundamental biomechanical model on which our hypothesis is based is the “three-element model” proposed by Hill. Our strategy is based on simultaneous video recording of changes in diameters and intraluminal pressure with a fiber-optic manometry in isolated segments of rabbit colon. We created a composite spatiotemporal map (DPMap) from diameter (DMap) and pressure changes (PMaps). In this composite map rhythmic myogenic motor patterns can readily be distinguished from the distension induced neural peristaltic contractions. Plotting the diameter changes against corresponding pressure changes at each location of the segment, generates “orbits” that represent the state of the muscle according to its ability to contract or relax actively or undergoing passive changes. With a software developed in MatLab, we identified twelve possible discrete mechanical states and plotted them showing where the intestine actively contracted and relaxed isometrically, auxotonically or isotonically, as well as where passive changes occurred or was quiescent. Clustering all discrete active contractions and relaxations states generated for the first time a spatio-temporal map of where enteric excitatory and inhibitory neural input to the muscle occurs during physiological movements. Recording internal diameter by an impedance probe proved equivalent to measuring external diameter, making possible to further develop similar strategy in vivo and humans.Australian National Health and Medical Research Counci

    Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation.

    Get PDF
    12 month embargo until 1 Nov 2017, as per publisher's policy.Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension or pressure. Digital Image Correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat sheet preparations of guinea pig distal colon were set up with arrays of tissue markers, in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist, DMPP. Mechanosensory firing was recorded during load-evoked uni-axial or bi-axial distensions. Distension caused movement of surface markers which was captured using video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes, caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity

    Control of intrinsic pacemaker frequency and velocity of colonic migrating motor complexes in mouse

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.The mechanisms that control the frequency and propagation velocity of colonic migrating motor complexes (CMMCs) in mammals are poorly understood. Previous in vitro studies on whole mouse colon have shown that CMMCs occur frequently (~every 1–3 min) when the colon is devoid of all fecal content. Consequently, these studies have concluded that the generation of CMMCs and the frequency which they occur does not require the presence of fecal content in the lumen. However, in these studies, stimuli have always been unavoidably applied to these empty colonic preparations, facilitating recordings of CMMC activity. We tested whether CMMCs still occur in empty whole colonic preparations, but when conventional recording methods are not used. To test this, we used video imaging, but did not utilize standard recording methods. In whole isolated colons containing multiple endogenous fecal pellets, CMMCs occurred frequently (1.9 ± 0.1/min) and propagated at 2.2 ± 0.2 mm/s. Surprisingly, when these preparations had expelled all content, CMMCs were absent in 11/24 preparations. In the remaining preparations, CMMCs occurred rarely (0.18 ± 0.02/min) and at reduced velocities (0.71 ± 0.1 mm/s), with reduced extent of propagation. When conventional recording techniques were then applied to these empty preparations, CMMC frequency significantly increased, as did the extent of propagation and velocity. We show that in contrast to popular belief, CMMCs either do not occur when the colon is free of luminal contents, or, they occur at significantly lower frequencies. We believe that previous in vitro studies on empty segments of whole mouse colon have consistently demonstrated CMMCs at high frequencies because conventional recording techniques stimulate the colon. This study shows that CMMCs are normally absent, or infrequent in an empty colon, but their frequency increases substantially when fecal content is present, or, if in vitro techniques are used that stimulate the intestine

    Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs

    Get PDF
    The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1,2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5]

    The Case for Dynamic Models of Learners' Ontologies in Physics

    Full text link
    In a series of well-known papers, Chi and Slotta (Chi, 1992; Chi & Slotta, 1993; Chi, Slotta & de Leeuw, 1994; Slotta, Chi & Joram, 1995; Chi, 2005; Slotta & Chi, 2006) have contended that a reason for students' difficulties in learning physics is that they think about concepts as things rather than as processes, and that there is a significant barrier between these two ontological categories. We contest this view, arguing that expert and novice reasoning often and productively traverses ontological categories. We cite examples from everyday, classroom, and professional contexts to illustrate this. We agree with Chi and Slotta that instruction should attend to learners' ontologies; but we find these ontologies are better understood as dynamic and context-dependent, rather than as static constraints. To promote one ontological description in physics instruction, as suggested by Slotta and Chi, could undermine novices' access to productive cognitive resources they bring to their studies and inhibit their transition to the dynamic ontological flexibility required of experts.Comment: The Journal of the Learning Sciences (In Press

    The effect of luminal content and rate of occlusion on the interpretation of colonic manometry

    Get PDF
    This is the accepted version of the following article: [Arkwright, J. W., Dickson, A., Maunder, S. A., Blenman, N. G., Lim, J., O’Grady, G., Archer, R., Costa, M., Spencer, N. J., Brookes, S., Pullan, A. and Dinning, P. G. (2013), The effect of luminal content and rate of occlusion on the interpretation of colonic manometry. Neurogastroenterology & Motility, 25: e52–e59.], which has been published in final form at [http://dx.doi.org/10.1111/nmo.12051]. In addition, authors may also transmit, print and share copies with colleagues, provided that there is no systematic distribution of the submitted version, e.g. posting on a listserve, network or automated delivery.Background Manometry is commonly used for diagnosis of esophageal and anorectal motility disorders. In the colon, manometry is a useful tool, but clinical application remains uncertain. This uncertainty is partly based on the belief that manometry cannot reliably detect non-occluding colonic contractions and, therefore, cannot identify reliable markers of dysmotility. This study tests the ability of manometry to record pressure signals in response to non-lumen-occluding changes in diameter, at different rates of wall movement and with content of different viscosities. Methods A numerical model was built to investigate pressure changes caused by localized, non-lumen-occluding reductions in diameter, similar to those caused by contraction of the gut wall. A mechanical model, consisting of a sealed pressure vessel which could produce localized reductions in luminal diameter, was used to validate the model using luminal segments formed from; (i) natural latex; and (ii) sections of rabbit proximal colon. Fluids with viscosities ranging from 1 to 6800 mPa s-1 and luminal contraction rates over the range 5-20 mmHg s-1 were studied. Key Results Manometry recorded non-occluding reductions in diameter, provided that they occurred with sufficiently viscous content. The measured signal was linearly dependent on the rate of reduction in luminal diameter and also increased with increasing viscosity of content (R2 = 0.62 and 0.96 for 880 and 1760 mPa s-1, respectively). Conclusions & Inferences Manometry reliably registers non-occluding contractions in the presence of viscous content, and is therefore a viable tool for measuring colonic motility. Interpretation of colonic manometric data, and definitions based on manometric results, must consider the viscosity of luminal content.Australian National Health & Medical Research Counci
    corecore