
Archived at the Flinders Academic Commons: 
http://dspace.flinders.edu.au/dspace/ 

This is the accepted version of the following article: 
Arkwright, J. W., Dickson, A., Maunder, S. A., Blenman, N. 
G., Lim, J., O’Grady, G., Archer, R., Costa, M., Spencer, N. 
J., Brookes, S., Pullan, A. and Dinning, P. G. (2013), The 
effect of luminal content and rate of occlusion on the 
interpretation of colonic manometry. 
Neurogastroenterology & Motility, 25: e52–e59,
which has been published in final form at [http://
dx.doi.org/0.1111/nmo.12051]. In addition, authors may 
also transmit, print and share copies with colleagues, 
provided that there is no systematic distribution of the 
submitted version, e.g. posting on a listserve, network or 
automated delivery.

This is the authors’ version of an article published in   
Neurogastroenterology and Motility. The original 
publication is available by subscription at: 
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%
291365-2982 

doi: 10.1111/nmo.12051

Please cite this article as: 

Arkwright, J. W., Dickson, A., Maunder, S. A., Blenman, N. 
G., Lim, J., O’Grady, G., Archer, R., Costa, M., Spencer, N. J., 
Brookes, S., Pullan, A. and Dinning, P. G. (2013), The effect 
of luminal content and rate of occlusion on the 
interpretation of colonic manometry. 
Neurogastroenterology & Motility, 25: e52–e59

Copyright © 2012 Blackwell Publishing Ltd. All rights 

reserved. Please note that any alterations made during the 

publishing process may not appear in this version. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

https://core.ac.uk/display/43326735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dspace.flinders.edu.au/dspace/


The effect of luminal content and rate of occlusion on the interpretation 

of colonic manometry 

J. W. Arkwright1, A. Dickson1, 2, S. Maunder1, N. Blenman1, J. Lim3, G. O’Grady3, 

4, R. Archer5, M. Costa6, N. J. Spencer6, S. Brookes6, A. Pullan3,5, P. G. Dinning6 

1. CSIRO Materials Science and Engineering, Bradfield Road, Lindfield, NSW 2070,

Australia. 

2. Queensland University of Technology, Science and Engineering Faculty, PO Box

2434, Brisbane, QLD 4001 

3. University of Auckland, Bioengineering Institute, University of Auckland, New

Zealand 

4. Dept of Surgery & Bioengineering Institute, University of Auckland, New Zealand

5. University of Auckland, Department of Engineering Science, University of Auckland,

New Zealand 

6. Department of Human Physiology, Flinders University, Bedford Park, Australia

Corresponding Author: J. W. Arkwright 



 

Abstract: 

Background 

Manometry is commonly used for diagnosis of esophageal and anorectal motility 

disorders.  In the colon, manometry is a useful tool, but clinical application remains 

uncertain. This uncertainty is partly based upon the belief that manometry cannot 

reliably detect non-occluding colonic contractions and, therefore, cannot identify 

reliable markers of dysmotility. This study tests the ability of manometry to record 

pressure signals in response to non-lumen-occluding changes in diameter, at 

different rates of wall movement and with content of different viscosities. 

Methods 

A numerical model was built to investigate pressure changes caused by localized, 

non-lumen-occluding reductions in diameter, similar to those caused by contraction 

of the gut wall.  A mechanical model, consisting of a sealed pressure vessel which 

could produce localized reductions in luminal diameter, was used to validate the 

model using luminal segments formed from; i) natural latex; and ii) sections of rabbit 

proximal colon. Fluids with viscosities ranging from 1mPa.s to 6800mPa.s and 

luminal contraction rates over the range 5 – 20 mmHg/s were studied. 

Key Results 

Manometry recorded non-occluding reductions in diameter, provided that they 

occurred with sufficiently viscous content. The measured signal was linearly 

dependent on the rate of reduction in luminal diameter and also increased with 

increasing viscosity of content (R2= 0.62 and 0.96 for 880 and 1760 mPa.s 

respectively).  

Conclusions & Inferences 

Manometry reliably registers non-occluding contractions in the presence of viscous 

content, and is therefore a viable tool for measuring colonic motility. Interpretation of 

colonic manometric data, and definitions based on manometric results, must 

consider the viscosity of luminal content. 
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Introduction 

The primary tool for investigating motility disorders in the oesophagus and 

anorectum is manometry; it has provided valuable insight into normal and abnormal 

motility patterns in these regions 1, 2.  However, manometry in the adult colon is 

largely considered a research-only tool 3, based in part on the belief that colonic 

manometry can only detect a small subset of contractile activity.  

For example, it has been suggested that manometry will only record lumen occluding 

muscular contractions; that is, contractions in which the wall physically squeezes the 

catheter 4. As the diameter of the colon may exceed 50 mm and manometry 

catheters are relatively thin (3-5mm), it is often assumed that colonic manometry 

may miss the majority of wall movements 5. This assumption, which may be 

important for guiding manometric interpretations, has been supported by combined 

manometry and barostat studies that inferred up to 70% of contractile events are not 

recorded on manometry, when the colonic diameter exceeds 5.6cm 5. However, 

manometric recordings in children with dilated colons have reported normal motility 

patterns 6.  In addition, non-lumen occluding contractions have been recorded 

manometrically in the proximal colon 7, stomach 8, and esophagus 9 of adults.   

Manometry records intraluminal pressure and/or force generated by muscular 

contractions. A critical consideration determining manometric signals is how the 

force generated by the muscular contraction is transmitted to the manometric sensor.   

If the lumen is either closed, or in contact with a solid body such as the manometry 

catheter, then muscular contraction will be essentially isometric.  In these cases, the 

contractile force acts directly on the sensor and a large signal results.  Conversely, if 

there is deformable content within the lumen then wall movement will cause the 

content to redistribute itself along the lumen, and the signal may be transient and/or 

of small peak amplitude.  In the latter case, contractions can propel fluid or gaseous 

content rapidly, while generating relatively low luminal pressures 10.  

The aim of this study was to provide an improved numerical and physical foundation 

for interpreting manometric studies, by investigating the relationships between (i) the 

rate of reduction in luminal diameter and (ii) the viscosity of luminal content on the 

measured intraluminal pressure. We hypothesized that the signal recorded by a 

manometric catheter is positively correlated with both the rate of movement of the 

gut wall and by the viscosity of luminal content.  Accordingly, luminal diameter per se 



is not a reliable predictor of the manometric signals.  This hypothesis was 

investigated by both in-silico numerical and in-vitro experimental methods. 

Materials and Methods 

Numerical model 

A numerical model of a short section of lumen with a localized region that could 

undergo physical deformation surrounded by non-local reductions in diameter was 

built using COMSOL (COMSOL Multiphysics, COMSOL Inc., Palo Alto, CA, USA), a 

commercially available multiphysics modelling and simulation software package. 

Figure 1 shows the geometry of the COMSOL model that represents the central 

section of the experimental setup (explained in greater detail below), as explained in 

detail in the next section. The model was used to investigate how pressure 

measured on the axis of the lumen is affected by variations in viscosity of luminal 

content, and also rate of collapse of a localised section of lumen. 

For more efficient computation, a number of simplifying assumptions were made: 

1. The numerical model did not attempt to take into account the visco-elastic nature 

of the natural tissue. Therefore, visco-elastic creep was not simulated as 

pressure was applied to the external pressure vessel.  

2. The complicated geometry of the experimental setup was simplified to a single 

tube with two diameters, representing the main structure of the lumen, cannulae, 

and the flexible tubes to the reservoirs (Figure 1 & 2) 

3. In order to apply 2D axial symmetry, the flexible tubes linking the pressure vessel 

to the reservoirs were drawn parallel to the lumen.  

4. A uniform cylindrical shape was assumed for the starting geometry of the lumen.   

In addition, during execution of the model, the deformation of the luminal wall was 

solved independently of intraluminal content. Therefore, forces due to the fluid acting 

outwards onto the wall were not considered, which would increase with increasing 

fluid density or decreasing tube size. Open boundary conditions were specified at 

both ends of the model. This ensured zero internal pressure at resting conditions, as 

obtained during the experimental recordings.  



To investigate the effect of contraction rate, Gaussian-like pressure profiles up to the 

maximum applied pressure of 50 mmHg were applied to the external surface of the 

central luminal segment, followed by a ramp down to 0 mmHg, over intervals of 5 s, 

10 s and 20 s. 

The effect of luminal fluid viscosity was investigated by solving the fluid mechanics 

with two representative dynamic viscosities (780 mPa.s and 5000 mPa.s) for each 

pressure profile.  

Both in-vitro and in-silico models were built based on an active return of the lumen to 

its starting shape. In real colonic contractions, the mere cessation of active 

contraction would not cause the lumen to expand outwards of its own accord. The 

musculature would instead relax back to a flaccid state, eventually expanding back 

to the original dimensions as digesta flows in from neighbouring regions. 

Nevertheless, the model was designed to allow a sufficiently realistic representation 

of the physical conditions of luminal contractions underlying manometric 

interpretations  

In-Vitro Model 

The in-vitro experimental work carried out to validate the in-silico model used a 

pressure vessel capable of imposing a localised reduction in diameter in a luminal 

section of common internal diameter. The pressure vessel was based on an 

apparatus design by Dent et al 11 for the testing of water perfused sleeve catheters 

and is shown schematically in Figure 2. All experiments utilising animal tissue were 

approved by the Animal Welfare Committee of Flinders University.  

The pressure vessel contained two thin-walled cannulae located on a common 

central axis, each having an internal diameter of 11.8 mm, separated by a 20 mm 

gap. The luminal segment under test was tied to the cannulae to produce a water-

tight seal, under sufficient longitudinal tension to ensure that the lumen was open 

and the luminal wall approximately cylindrical in shape. 

The cannulae were connected to T-pieces to allow a manometry catheter with 

sensors at 10mm intervals to be fed through the lumen and pressure-sealed at both 

ends.  The upright arms of the T-pieces were connected to large-volume reservoirs 

that allowed the required luminal fillers to be gravity-fed into the internal region of the 

cannulae and lumen under test.  The sealed outer region of the pressure vessel itself 



was filled with water and connected to a syringe so that the lumen could be 

deformed hydraulically in a controllable fashion (Figure 2).  This allowed the lumen to 

be collapsed inwards over the 20 mm gap at different rates, towards its axis to 

simulate a localised muscular contraction. Applying the pressure hydraulically 

prevented any pressure induced changes in temperature occurring at the outer 

surface of the lumen that could have adversely affected the recordings. 

Two types of lumen were used.  Firstly, we studied sections of latex rubber.  

Secondly; sections of natural proximal colonic tissue obtained from four female New 

Zealand albino rabbits each weighing approximately 2 Kg. Following euthanasia by 

intravenous injection of sodium pentobarbitone (0.5 ml/kg), a ventral midline incision 

was performed and segments of proximal colon were removed, flushed of luminal 

content and placed in distilled water at room temperature to suppress spontaneous 

muscular activity. The proximal rabbit colon was specifically selected because it 

contains 3 bands of tenia and has a diameter (15 mm) of sufficient width to 

accommodate a manometery catheter (3 mm). Thus the section of gut was not 

distended by the catheter, nor was it ‘squeezing’ the catheter in its non-occluded 

state.  

The rubber material was more controllable than the colonic segment and formed 

more uniform cylindrical segments that were better matched to the numerical model 

described above.  The natural tissue was used to test whether results with latex were 

comparable to those of the more viscoelastic gut tissue 12. 

Luminal segments of either latex rubber or rabbit colon approximately 50 mm long 

were introduced over the ends of the cannulae and tied in place as described above 

(n=5 from 4 rabbits for the colonic lumen). In both cases, the  segments collapsed, 

as expected, in response to increases in pressure applied to the outer pressure 

vessel.  However, the slow visco-elastic creep of the sections of rabbit colon allowed 

the lumen to accommodate to the changes of pressure 12, resulting in a non-linear 

relationship between the depression of the syringe plunger (see below) and the 

applied pressure.  Because of this, only the initial rate of rise of the catheter 

response, corresponding to the approximately linear period of pressurisation, was 

used for analyses when studying specimens of rabbit colon.   



Manometry catheter 

A high resolution fibre optic catheter fabricated at CSIRO (CSIRO Materials Science 

and Engineering, Lindfield, NSW 2070, Australia) was used for the experimental 

studies.  The device was 3 mm in diameter and contained 32 pressure sensing 

elements spaced at 10 mm intervals along the axis.  The outer surface of the 

catheter was formed from a continuous silicone sleeve and had no inclusions or 

variations in outer diameter associated with the sensing regions.  The design, 

operation and validation of the catheter have been described in detail previously 13, 

14.   

The catheter was fed through the central lumen within the pressure vessel and held 

at proximal and distal regions using the pressure seals indicated in Figure 2.  The 

catheter was held under a slight axial tension so that it was constrained to lie along 

the common axis of the cannulae and lumen.   

Viscous fillers 

The viscous filler to be tested was poured into one reservoir and allowed to flow into 

and through the internal region of the lumen. Four luminal fillers of differing viscosity, 

simulating colonic contents, ranging from ~200 to ~7000 mPa.s were prepared.  

Water was used as a control (viscosity = 1mPa.s) and thicker fillers were made by 

dissolving Methylcellulose (Product # 274429, Sigma Aldrich, Australia) into warmed 

water and left overnight to gel. The viscosity of each prepared mixture was verified 

with a hand-held viscometer (Brookfield Synchro-Lectric Viscometer, Model RVF) 

immediately prior to use. For the more viscous fillers, the liquid was drawn through 

the internal region using a syringe pressed into the lower aperture of the second 

reservoir.  Air bubbles that lodged in the region of the luminal segment were 

displaced prior to the start of measurements. 

Experimental protocol 

Degree of Occlusion 

First, we determined how much the luminal diameter needed to be reduced for the 

wall to directly contact the catheter was determined with no luminal filler present. The 

luminal segment was collapsed by depressing the syringe plunger in a step-wise 

manner and the resulting change in pressures registered by the catheter were 

recorded. The graph in Figure 3 shows a typical result from one such test. The 



sensor located mid-way between the ends of the cannulae and directly at the centre 

of the lumen shows increasing pressure from the moment the luminal wall first 

makes contact with the catheter. The responses from nearest the neighbouring 

sensors along the catheter remained unchanged, indicating that the catheter was 

correctly located within the lumen.  Thereafter, the range of movement of the syringe 

plunger was then limited to ~80% of the point of occlusion to prevent physical 

contact between the lumen and the catheter. 

Dynamic Response 

Once the point of occlusion had been determined, one of the reservoirs was filled 

with liquid of the desired viscosity.  The syringe was then depressed, forcing the 

walls of the luminal segment (latex or rabbit colon) to constrict in a series of phasic 

pressure events, each with a different rate.   For one section of rabbit colon the 

events pressure changes were repeated multiple times using two different viscosities 

(880 and 1760mPa.s), in order to generate statistically significant data. 

 

Results 

In-silico results 

The calculated changes in pressure on the axis of the lumen during a sequence of 

non-occluding events, using luminal fluid with viscosities of 780 and 5000mPa.s, in 

response to localised reductions in diameter are displayed in Figure 4.  As the 

luminal diameter reduced, the fluid pressure increased due to viscous forces and the 

restricted diameter at the ends of the lumen. However, as fluid continued to flow out 

of the contracted region, pressure rapidly decreased even as the wall continued to 

deform inwards. As the lumen gradually returned to its starting position, the 

intraluminal pressure dropped below zero.  It is interesting to note that the 

intraluminal pressure starts to increase rapidly even at the very early stages of the 

reduction in diameter.  This trend was also present in the in-vitro investigations as 

described below (Figure 5). 

The intraluminal pressure increased faster when using intraluminal filler solutions of 

higher viscosity, as well as when rapid rates of wall movement were imposed.  



In-vitro results 

The trends identified in the in-silico model were also present in both latex rubber and 

colonic tissue experiments. Figure 5 shows pressures measured in the centre of the 

lumen using contents with two viscosities, during diameter reductions similar to the 

in-silico model.  All of the features identified in the numerical simulations (Figure 4) 

were faithfully reproduced in the latex model, demonstrating the validity of the 

numerical results. 

The collated pressure traces results from the sensor immediately underneath the 

lumen, during a separate series of non-occluding events at different rates of 

collapse, and with different luminal filler viscosity, for all of the latex rubber 

contractions are shown in Figure 6.  These results demonstrated several key points.  

Firstly, the wall did not have to make contact with the sensor in order for it to record 

manometric signals in the presence of a viscous luminal filler. Secondly, there was a 

clear association between viscosity and pressure: as the viscosity of content 

increased, the measured pressure increased. Thirdly, as the rate of collapse 

increased, the rate of rise of recorded pressure also increased, and hence the peak 

pressure response achieved also increased.  

Figure 7 shows equivalent manometric response during non-occluding events in 

lumen from the rabbit colon, at different rates of wall movement, with fluid content 

with a viscosity of 880 mPa.s.  Despite evident visco-elastic creep of the natural 

tissue, the similar results to those obtained with latex are evident. The recorded 

pressure increased with both increasing rate of contraction, and with increasing 

viscosity of the luminal content.   

Due to the visco-elastic creep causing variability in the measured responses, 

repeated measurements were on one section of gut, using two fillers of different 

viscosity (880 and 1760 mPa.s). Figure 8 shows this data from 48 separate 

contractions.  The trend lines for both fillers demonstrated a linear increase in the 

measured pressure measured by the sensor with respect to the applied pressure 

(p<0.0001 for non-zero slope), of 0.48 (95%CI: 0.33-0.62) for the 880 mPa.s filler, 

and 0.71 (95%CI: 0.64-0.78) for the 1760 mPa.s filler. The higher measured 

pressures recorded with more viscous filler solutions further confirmed the 

relationships demonstrated in Figure 6 for low rates of luminal collapse. With lower 

viscosity filler the data was more scattered (R2=0.62 compared to R2=0.96 for the 



higher viscosity), reflecting more variability in the rate of wall movement, probably 

caused by the low resistance to collapse of the luminal wall. 

Discussion 

This joint numerical and experimental study investigated the relationships between 

pressure changes measured by a manometric sensor, rate of wall movement, and 

viscosity of luminal content. Close agreement was shown between the in-silico and 

in-vitro results, demonstrating the validity of the numerical model within its stated 

assumptions.  

Previous reports have suggested that colonic manometry fails to record non-lumen 

occluding contractions 4 and that the majority of contractile activity may not be 

detected in the regions of the colon with large diameters 5. Our results unequivocally 

demonstrate that manometric devices can respond to non-occluding contractions, 

and furthermore, that the magnitude of the response is directly dependent on both 

the viscosity of the contents and on the rate of movement of the luminal wall.  Hence, 

the assumption that non-occluding contractions cannot be recorded by manometry is 

erroneous.  

An influential study by von der Ohr et al concluded that that when the colon exceeds 

a diameter of 5.6 cm, manometry may miss up to 70% of the contractile activity 5.  

Our results indicate that luminal diameter in isolation is not an appropriate surrogate 

measure of the efficacy of intraluminal manometry; the viscosity of the contents and 

the rate of wall movement will have major effects on the measured pressure. Hence, 

the colonic diameter inferred by the isobaric inflation of a balloon, as performed by 

von der Ohr et al, should not be used to delineate between effective and non-

effective manometry. It should be further noted that an ‘effective colonic diameter’ 

defined by the volume of a barostat bag under a pre-described pressure 5 is not 

comparable to the true colonic condition of a full lumen of the same diameter.  

Rather, the approach of von der Ohr et al 5 instead offers an indication of the 

compliance, or resistance to distension, under the action of the expanding bag.  

Hence it needs to be recognized that the 5.6 cm “colonic diameter” described in that 

study as the cut-off for effective manometry is highly unlikely to represent the natural 

working state of the colon.  Under normal conditions, once the barostat is removed, 



the colonic lumen will return to its normal state in which it is filled with content 

ranging from gas to semi-solid.  

A further point to consider in interpreting the findings of 5 is their assumption about 

the distances over which contractions propagate in the human colon. At the time of 

writing their paper, studies in canine colon 15 and human colon 16 suggested that 

the majority of propagating contractions propagate over distances greater than >10 

cm.  Thus, they argued that most events detected by a barostat bag (10 cm in 

length) would reasonably be expected to be detected by neighbouring manometry 

sensors proximally and distally. However, recent in-vivo, high resolution manometry 

studies in human colon, with sensors spaced at 1cm intervals, have shown that 

many colonic propagating sequences are of short extent (3-7 cm) 17. Therefore, 

events recorded by the barostat would not necessarily have propagated to the 

manometry sensors.  In addition, the barostat bag itself may have stimulated low 

threshold mucosal afferents, causing localised contractile events that would similarly 

not necessarily propagate to neighbouring manometry sensors. 

The present study shows that viscosity of luminal content has a major influence on 

the manometric signal. Manometric signals are often recorded in a prepared (empty) 

colon 18; however the current study suggests that the amplitude of recorded signals 

are likely to change as the colon fills, simply because of changes in mechanical 

coupling between wall movements and the pressure sensors. This observation may 

be relevant to the results of studies in which manometry catheters were placed 

during colonoscopy in a prepared bowel, followed by recordings over and beyond the 

following 24 hours. The viscosity of colonic content can vary by many orders of 

magnitude as it traverses progresses from the caecum to rectum, undergoing the 

normal de-watering processes. Variation in the amplitude of the manometric signal in 

different regions of the colon may reflect the nature of the content more than the 

force of contraction of the muscular wall. For example, in studies performed by some 

of the present authors 19, 20, the average amplitude of propagating pressure waves 

in the distal colon was reported to be greater than in the ascending and transverse 

colon. This was interpreted as reflecting an adaptation of the distal colon to generate 

stronger contractions required to shift the increasingly viscous content. However, the 

present current study, together with a recently published numerical consideration of 

colonic motility 21, suggests that the differing amplitude of the signal may in fact 



simply reflect the manometric response changing due to the increasing viscosity of 

content. 

These findings may also have significant implications for the definition of high 

amplitude propagating pressure waves. These events have been defined under a 

variety of names and have been defined with cut-off amplitudes ranging from 50 to 

136 mmHg 22.  The current study suggests that attributing an exact, arbitrary value 

to distinguish high amplitude events, as some of the authors here have also done in 

the past (e.g. >116mmHg 19), is inappropriate. However, by no means does this 

suggest that identification of these events is unimportant, because these events are 

known to be associated with defecation 23, 24 and luminal propulsion 25 and 

pathophysiologically, their frequency incidence is diminished in patients with slow 

transit constipation 18, 26-28.  

Gathering direct evidence of our findings from in vivo human colonic manometry 

studies is not easily done, because of the need to dynamically measure intra-luminal 

pressure and image the luminal dimensions.  The latter measurement can be 

achieved with videofluoroscopy, however as the colonic contractile activity is not 

under voluntary control, prolonged screening may be required to capture the 

required events, and that poses ethical concerns.  However, evidence is available 

from analyses of swallowing using videoflouroscopy combined with manometry.  

These studies readily pick up the intrabolus pressure as a liquid bolus passes a 

given manometry sensor and then a significantly higher peak as the lumen collapses 

down on the catheter during the peristaltic squeeze 9. 

Although not a focus of this study, the nature of the manometric signal is also likely 

to be influenced by physical features of the colonic lumen, for example, the presence 

of constrictions and/or sphincters such as the ileocaecal junction, the colonic 

haustral folds, sharp angulations (eg: the splenic flexure and sigmoid colon), distal 

inhibitory neural reflexes acting on the smooth muscle, overall muscle wall 

hypertrophy (as occurs in diverticulosis), or focal narrowing and/or strictures.  Such 

anatomical features will modify the resistance to longitudinal propulsion of content in 

response to a localized contraction, and hence will affect the ‘back pressure’ 

detected by the manometry sensor.  The design of our pressure vessel allows for the 

addition of non-local constrictions at a distance to the imposed wall movements and 

will be used for future characterisation of the magnitude of such effects. 



In conclusion, this study has presented a joint numerical and experimental 

investigation into the effects of non-lumen-occluding contractions in the presence of 

viscous media on manometry. Through a series of controlled in-vitro experiments 

using localized imposed wall movements in sections of excised animal gut and latex 

tubing, and an associated numerical study, we have demonstrated unequivocally 

that non-occluding luminal contractions are recorded using intraluminal manometry.  

Our results further demonstrate that the strength of the recorded signal is dependent 

on both the viscosity of the luminal content and the rate of contraction of the luminal 

wall.  As pointed out above, the compliance and diameters of neighbouring regions 

of gut are also likely to be important factors, although these were not included in the 

present study. 

While we have related this study to the specific conditions facing the researcher 

undertaking colonic manometry, the results described here are equally applicable to 

other regions of the GI tract in which viscosity of content is either intentionally varied 

(such as controlled swallows in the oesophagus) or naturally occurs (such as chyme 

entering the small bowel following meals of differing consistency and content).   

Acknowledgements 

This manuscript is dedicated to our colleague and friend Andrew Pullan who lost his 

battle with cancer during the final stages of the project.  

The work was conceived and planned during a meeting between JA, PD, IC, GOG, 

AP, NS, MC, SB and MC.  The experimental protocol was developed by JA, AP and 

SB.  The catheters were fabricated and supplied by JA and the in-vitro testing 

environments were devised by MC and NS and assembled by NB and SM.  The 

experiments were conducted by AD under the supervision of JA and PD, and the 

numerical model was assembled and run by JL under the supervision of RA, GOG 

and AP. The draft was prepared by JA and edited by all authors. 

 

Dr O’Grady and Prof. Pullan received funding for this work from NIH R01 DK64775 

and the Riddett Institute. 

Dr Dinning is supported by NHMRC grant #630502 and the Clinician’s Special 

Purpose Fund of the Flinders Medical Centre  



The in-vitro experiments involving rabbit tissue were performed in Dr Spencer’s 

laboratory which is supported by NHMRC grant #1025766.  Dr Brookes is supported by 

NHMRC project grant #595979 

References 

 

1. Jones MP, Post J, Crowell MD. High-resolution manometry in the evaluation 
of anorectal disorders: a simultaneous comparison with water-perfused manometry. 
Am J Gastroenterol 2007; 102: 850-855. 
2. Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ. 
Classifying esophageal motility by pressure topography characteristics: a study of 
400 patients and 75 controls. The American Journal of Gastroenterology 2008; 103: 
27-37. 
3. Smout AJPM. Recent developments in gastrointestinal motility. Scand J 
Gastroenterol Suppl 2006; 41: 25-31. 
4. Sarna SK. Colonic Motility: From Bench Side to Bedside. 2011/04/01 edn: 
Morgan & Claypool Life Sciences, 2010. 
5. von der Ohe MR, Hanson RB, Camilleri M. Comparison of simultaneous 
recordings of human colonic contractions by manometry and a barostat. 
Neurogastroenterol Mot 1994; 6: 213-222. 
6. van den Berg MM, Hogan M, Caniano DA, Di Lorenzo C, Benninga MA, 
Mousa HM. Colonic manometry as predictor of cecostomy success in children with 
defecation disorders. J Pediatr Surg 2006; 41: 730-736; discussion 730-736. 
7. Dinning PG, Szczesniak MM, Cook IJ. Proximal colonic propagating pressure 
waves sequences and their relationship with movements of content in the proximal 
human colon. Neurogastroenterol Mot 2008; 20: 512-520. 
8. Hausken T, Mundt M, Samsom M. Low antroduodenal pressure gradients are 
responsible for gastric emptying of a low-caloric liquid meal in humans. 
Neurogastroenterol Motil 2002; 14: 97-105. 
9. Brasseur JG, Dodds WJ. Interpretation of intraluminal manometric 
measurements in terms of swallowing mechanics. Dysphagia 1991; 6: 100-119. 
10. Ritchie JA, Ardran GM, Truelove SC. Motor activity of the sigmoid colon of 
humans. A combined study by intraluminal pressure recording and cineradiography. 
Gastroenterology 1962; 43: 642-668. 
11. Dent J, Chir B. A new technique for continuous sphincter pressure 
measurement. Gastroenterology 1976; 71: 263-267. 
12. Gregersen H. Biomechanics of the Gastrointestinal Tract: New Perspectives 
in Motility Research and Diagnostics. London: Springer, 2003. 
13. Arkwright JW, Blenman NG, Underhill ID, et al. In-vivo demonstration of a 
high resolution optical fiber manometry catheter for diagnosis of gastrointestinal 
motility disorders. Optics Express 2009; 17: 4500-4508. 
14. Arkwright JW, Underhill ID, Maunder SA, et al. Design of a high-sensor count 
fibre optic manometry catheter for in-vivo colonic diagnostics. Optics Express 2009; 
17: 22423-22431. 
15. Sarna SK, Prasad KR, Lang IM. Giant migrating contractions of the canine 
cecum. Am J Physiol Gastrointest Liver Physiol 1988; 254: G595-G601. 



16. Dapoigny M, Trolese JF, Bommelaer G, Tournut R. Myoelectric spiking 
activity of right colon, left colon, and rectosigmoid of healthy humans. Dig Dis Sci 
1988; 33: 1007-1012. 
17. Dinning PG, Hunt L, Arkwright JW, et al. Pancolonic motor response to 
subsensory and suprasensory sacral nerve stimulation in patients with slow-transit 
constipation. Br J Surg 2012; 99: 1002-1010. 
18. Dinning PG, Zarate N, Szczesniak MM, et al. Bowel preparation affects the 
amplitude and spatiotemporal organization of colonic propagating sequences. 
Neurgastroenterol Mot 2010; 22: 633 - e176. 
19. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. Prolonged 
multi-point recording of colonic manometry in the unprepared human colon: providing 
insight into potentially relevant pressure wave parameters. Am J Gastroenterol 2001; 
96: 1838-1848. 
20. Dinning PG, Bampton PA, Andre J, et al. Abnormal predefecatory colonic 
motor patterns define constipation in obstructed defecation. Gastroenterology 2004; 
127: 49-56. 
21. Sinnott MD, Cleary PW, Arkwright JW, Wang C, Dinning PG. Investigating the 
relationships between peristaltic contraction and fluid transport in the human colon 
using Smoothed Particle Hydrodynamics. Comp Biol Med 2012; 42: 492-503. 
22. Scott M. Manometric Techniques for the evaluation of colonic motor activity: 
current status. Neurogastroenterol Mot 2003; 15: 483-513. 
23. Kamm MA, van der Sijp JRM, Lennard-Jones JE. Observations on the 
characteristics of stimulated defaecation in severe idiopathic constipation. Int J 
Colorect Dis 1992; 7: 197-201. 
24. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, deCarle DJ, Cook IJ. 
Spatial and temporal organization of pressure patterns throughout the unprepared 
colon during spontaneous defecation. Am J Gastroenterol 2000; 95: 1027-1035. 
25. Cook IJ, Furukawa Y, Panagopoulos V, Collins PJ, Dent J. Relationships 
between spatial patterns of colonic pressure and individual movements of content. 
Am J Physiol Gastrointest Liver Physiol 2000; 278: G329-G341. 
26. Bassotti G, Gaburri M, Imbimbo BP, et al. Colonic mass movements in 
idiopathic chronic constipation. Gut 1988; 29: 1173-1179. 
27. Di Lorenzo C, Flores AF, Reddy SN, Hyman PE. Use of colonic manometry to 
differentiate causes of intractable constipation in children. J Pediatr 1992; 120: 690-
695. 
28. Rao SS, Sadeghi P, Beaty J, Kavlock R. Ambulatory 24-hour colonic 
manometry in slow-transit constipation. Am J Gastroenterol 2004; 99: 2405-2416. 

 

 

Figures: 

1. Geometry of the COMSOL numerical model used to calculate the effect of 

localised wall movements on pressure recorded on an underlying manometric 

sensor located in the centre of the region of applied wall movement. 

2. Schematic of the setup used to generate the localized movement of the wall of a 

tubular segment of gut or latex.  A fluid-filled syringe is used to hydraulically 



generate the required localized reductions in diameter (monitored by a pressure 

gauge). This causes the walls of the specimen of gut to move inwards, towards 

the manometric catheter, in a controlled rate.  The gut is filled with a solution of 

known viscosity (dark blue), from the two reservoirs (dark blue).   

3. Determination of the point of occlusion.  A graded series of pressure steps were 

applied to determine that point where the wall of the tube contacted the pressure 

sensor on the manometric catheter.  At this point, the signal recorded by the 

manometric sensor starts to increase rapidly.  For the rest of the study, pressures 

were used that were less than 80% of the threshold required for lumen occlusion. 

4. Modelling of sensor recordings during wall movements imposed by increasing 

pressure in the chamber surrounding the gut.  The applied pressure is shown in 

blue, and calculated sensor responses are shown for viscosities of 780 and 5000 

mPa.s (red and purple traces).   

5. Measured changes in pressure on the axis of the latex lumen for phasic applied 

pressure profiles, using luminal content with viscosities of 795 and 3180 mPa.s 

(blue and red traces). 

6. Effects of viscosity of filler on initial pressure gradients of measured pressures 

recorded from the sensor immediately underneath the region of contraction 

during collapse of the latex lumen. 

7. Measured changes in pressure on the axis of the section of rabbit colon lumen for 

phasic applied pressure profiles, using luminal content with a viscosity of 880 

mPa.s.   

8. Measured rate as a function of applied rate for 48 separate contractions using 

filler viscosities of 880mPa.s and 1760mPa.s.  Linear curve fits to the data gives 

slopes of 0.48 (R2=0.62) and 0.71 (R2=0.96) respectively. 

 

Supporting Information 

The COMSOL in-silico model was solved in two coupled steps. First, a pressure load 

was applied to the tube wall (as indicated by the dashed arrows in Figure 1) and the 

resulting wall deformation was solved, assuming linear-elasticity of the wall material. 

Next, the response of the luminal fluid to the pressure exerted by the deforming wall 



was solved using the Navier-Stokes formulation. Fluid pressure at the centre of the 

tube was computed. This corresponds to the position of the central pressure sensor 

on the recording catheter. 

COMSOL’s moving mesh Arbitrary Lagrangian-Eulerian application (ALE) was used 

to couple the forces from the deforming tube wall onto the fluid interface. This 

intermediate step generated a deformed mesh of the fluid subdomain at each time-

step taken by the solid mechanics solver, which was then input into the fluids solver. 



Figure 1. Geometry of the COMSOL numerical model used to calculate the effect of localised wall movements on pressure 

recorded by a manometric sensor located on the axis of the lumen. The model assumes cylindrical symmetry with a 

larger diameter representing the cannulae and lumen and small diameter tubes representing non-local constrictions.  

The contractile region of the lumen was located  at the mid-point of the lumen.  This simplified geometry matched the 

functional design of the experimental apparatus as shown by the dashed lines in Figure 2. 
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Figure 2. Schematic of the setup used to generate the localized movement of the wall of a tubular segment of gut or latex. 

A fluid-filled syringe is used to hydraulically generate the required localized reductions in diameter (monitored by a 

pressure gauge). This causes the walls of the specimen of gut to move inwards, towards the manometric catheter, in a 

controlled rate.  The gut is filled with a solution of known viscosity (dark blue), from the two reservoirs (dark blue).  The 

region of the apparatus simulated by the in-silico model is indicated by the dashed lines. 



Figure 3. Determination of the point of occlusion.  A graded series of pressure steps 
were applied to determine that point where the wall of the tube contacted the 
pressure sensor on the manometric catheter.  At this point, the signal recorded by the 
manometric sensor starts to increase rapidly.  For the rest of the study, pressures were 
used that were less than 80% of the threshold required for lumen occlusion. 



Figure 4: Modelling of sensor recordings during wall movements imposed by increasing 
pressure in the chamber surrounding the gut.  The applied pressure is shown in green, 
and calculated sensor responses are shown for viscosities of 780 and 5000 mPa.s (blue 
and red traces).  



Figure 5: Measured changes in pressure on the axis of the latex lumen for phasic applied 
pressure profiles(green trace) , using luminal content with viscosities of 795 and 3180 

mPa.s (blue and red traces). 
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Figure 6: Effects of viscosity of filler on initial pressure gradients of measured pressures recorded from 
the sensor immediately underneath the region of reducing diameter during collapse of the latex lumen 



Figure 7: Measured changes in pressure on the axis of the section of rabbit colon lumen for phasic 
applied pressure profiles, using luminal content with a viscosity of 880 mPa.s.  



Figure 8. Measured rate as a function of applied rate for 48 separate contractions using filler 
viscosities of 880mPa.s and 1760mPa.s.  Linear curve fits to the data gives slopes of 0.48 
(R2=0.62) and 0.71 (R2=0.96) respectively. 
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