90 research outputs found

    Robust microorganisms for biofuel and chemical production from municipal solid waste

    Get PDF
    BACKGROUND: Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. RESULTS: The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in D-glucose (5.5% w/v) and D-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species' growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. CONCLUSIONS: Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock

    High-throughput Saccharification Assay for Lignocellulosic Materials

    Get PDF
    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest 1. In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification 2. These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system

    Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane

    Get PDF
    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater

    Sudangrass, an alternative lignocellulosic feedstock for bioenergy in Argentina

    Get PDF
    Sudangrass, Sorghum sudanense (Piper) Stapf, is a vigorous forage crop that has also been used for biogas, paper, and electricity production. Due to the large biomass yields achieved by sudangrass and the large area of potential growth in Argentina seven sudangrass accessions from a collection of S. sudanense were analyzed to evaluate their potential as feedstocks for lignocellulosic bioethanol production, and to assess whether there is an association between the response to biotic and abiotic stresses and the composition of the biomass. The biomass composition was analyzed for major cell wall polymers, monosaccharides, and elemental composition. On average, 68% of stem lignocellulosic biomass was comprised of matrix polysaccharides and crystalline cellulose, representing a potential source of sugars for bioethanol production. Xylose was the predominant matrix polysaccharide monosaccharide comprising, on average, 45% of the total sugars, followed by arabinose, glucose, galactose, galacturonic acid, mannose, glucuronic acid, and fucose. Rhamnose was not detected in any of the biomasses analyzed. Silica was the most abundant element in sudangrass stem, followed by chloride, calcium, phosphorus and sulfur. We performed saccharification analyses after pretreatments. Alkaline pretreatment was more effective than water pretreatment. Sodium hydroxide pretreatment exposed different levels of recalcitrance among sudangrass accessions, whereas the water pretreatment did not. Phenological traits were also evaluated, showing significant variability among accessions. The comparison of major cell wall polymers and monosaccharide composition between tolerant and susceptible accessions to abiotic and biotic stresses suggests an association between the composition of the biomass and the response to stress

    Biomass recalcitrance in barley, wheat and triticale straw : Correlation of biomass quality with classic agronomical traits

    Get PDF
    The global production of cereal straw as an agricultural by-product presents a significant source of biomass, which could be used as feedstock for the production of second generation biofuels by fermentation. The production of sugars for fermentation is an important measure of straw quality and in its suitability for biofuel production. In this paper, we present a characterization of straw digestibility from a wide range of cereal. Our main objective is to evaluate the variability of fermentable sugars released from different species including wheat (Triticum durum L., Triticum aestivum L.), barley (Hordeum vulgare L.) and triticale (X Triticosecale Wittmack). To this end, we adapted a saccharification method (IAS Method) capable of detecting significant differences of released sugars between cultivars and species, while using separately another method that would serve as a control and with which we could contrast our results (CNAP method). ANOVA analyses revealed that barley has a higher saccharification potential than wheat and triticale and shows more variation between genotypes. Thus, populations derived from crosses among them such as Steptoe × Morex and OWB Dominant × OWB Recessive hold potential for the identification of genetic basis for saccharification-related traits. The correlation of glucose released between the two methods was moderate (R2 = 0.57). An evaluation of the inter- and intra- specific correlation between a number of chemical and agronomical parameters and saccharification suggests that the cell wall thickness and lignin content in straw could be used in breeding programs for the improvement of the saccharification potential. Finally, the lack of correlation between grain yield and saccharification suggests that it would be possible to make a selection of genotypes for dual purpose, low recalcitrance and grain yield

    Supercritical extraction as an effective first-step in a maize stover biorefinery

    Get PDF
    Supercritical carbon dioxide (scCO2) has been investigated for the generation of valuable waxy compounds and as an added-value technology in a holistic maize stover biorefinery. ScCO2 extraction and fractionation was carried out prior to hydrolysis and fermentation of maize stover. Fractionation of the crude extracts by scCO2 resulted in wax extracts having different compositions and melting temperatures, enabling their utilisation in different applications. One such fraction demonstrated significant potential as a renewable defoaming agent in washing machine detergent formulations. Furthermore, scCO2 extraction has been shown to have a positive effect on the downstream processing of the maize stover. Fermentation of the scCO2 extracted maize stover hydrolysates exhibited a higher glucose consumption and greater potential growth for surfactant (in comparison with non-scCO2 treated stover) and ethanol production (a 40% increase in overall ethanol production after scCO2 pre-treatment). This work represents an important development in the extraction of high value components from low value wastes and demonstrates the benefits of using scCO2 extraction as a first-step in biomass processing, including enhancing downstream processing of the biomass for the production of 2nd generation biofuels as part of an integrated holistic biorefinery

    Identification of crop cultivars with consistently high lignocellulosic sugar release requires the use of appropriate statistical design and modelling

    Get PDF
    Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment

    Characterisation of the enzyme transport path between shipworms and their bacterial symbionts.

    Get PDF
    BACKGROUND: Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal's gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. RESULTS: Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. CONCLUSION: Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm's mouth and digestive tract, where they aid in wood digestion
    corecore