62 research outputs found

    Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia

    Get PDF
    Myelination is a complex, developmentally regulated process whereby myelin proteins and lipids are coordinately expressed by myelinating glial cells. Homozygosity mapping in nine patients with childhood onset spasticity, dystonia, cognitive dysfunction, and periventricular white matter disease revealed inactivating mutations in the FA2H gene. FA2H encodes the enzyme fatty acid 2-hydroxylase that catalyzes the 2-hydroxylation of myelin galactolipids, galactosylceramide, and its sulfated form, sulfatide. To our knowledge, this is the first identified deficiency of a lipid component of myelin and the clinical phenotype underscores the importance of the 2-hydroxylation of galactolipids for myelin maturation. In patients with autosomal-recessive unclassified leukodystrophy or complex spastic paraparesis, sequence analysis of the FA2H gene is warranted

    A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism

    Get PDF
    Parkinson disease is caused by neuronal loss in the substantia nigra which manifests by abnormality of movement, muscle tone, and postural stability. Several genes have been implicated in the pathogenesis of Parkinson disease, but the underlying molecular basis is still unknown for ∼70% of the patients. Using homozygosity mapping and whole exome sequencing we identified a deleterious mutation in DNAJC6 in two patients with juvenile Parkinsonism. The mutation was associated with abnormal transcripts and marked reduced DNAJC6 mRNA level. DNAJC6 encodes the HSP40 Auxilin, a protein which is selectively expressed in neurons and confers specificity to the ATPase activity of its partner Hcs70 in clathrin uncoating. In Auxilin null mice it was previously shown that the abnormally increased retention of assembled clathrin on vesicles and in empty cages leads to impaired synaptic vesicle recycling and perturbed clathrin mediated endocytosis. Endocytosis function, studied by transferring uptake, was normal in fibroblasts from our patients, likely because of the presence of another J-domain containing partner which co-chaperones Hsc70-mediated uncoating activity in non-neuronal cells. The present report underscores the importance of the endocytic/lysosomal pathway in the pathogenesis of Parkinson disease and other forms of Parkinsonism

    Arginine:glycine amidinotransferase (AGAT) deficiency: Clinical features and long term outcomes in 16 patients diagnosed worldwide

    Get PDF
    Abstract Background Arginine:glycine aminotransferase (AGAT) (GATM) deficiency is an autosomal recessive inborn error of creative synthesis. Objective We performed an international survey among physicians known to treat patients with AGAT deficiency, to assess clinical characteristics and long-term outcomes of this ultra-rare condition. Results 16 patients from 8 families of 8 different ethnic backgrounds were included. 1 patient was asymptomatic when diagnosed at age 3 weeks. 15 patients diagnosed between 16 months and 25 years of life had intellectual disability/developmental delay (IDD). 8 patients also had myopathy/proximal muscle weakness. Common biochemical denominators were low/undetectable guanidinoacetate (GAA) concentrations in urine and plasma, and low/undetectable cerebral creatine levels. 3 families had protein truncation/null mutations. The rest had missense and splice mutations. Treatment with creatine monohydrate (100–800 mg/kg/day) resulted in almost complete restoration of brain creatine levels and significant improvement of myopathy. The 2 patients treated since age 4 and 16 months had normal cognitive and behavioral development at age 10 and 11 years. Late treated patients had limited improvement of cognitive functions. Conclusion AGAT deficiency is a treatable intellectual disability. Early diagnosis may prevent IDD and myopathy. Patients with unexplained IDD with and without myopathy should be assessed for AGAT deficiency by determination of urine/plasma GAA and cerebral creatine levels (via brain MRS), and by GATM gene sequencing

    Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood.

    Get PDF
    Ribosomal RNA (rRNA) is transcribed from rDNA by RNA polymerase I (Pol I) to produce the 45S precursor of the 28S, 5.8S, and 18S rRNA components of the ribosome. Two transcription factors have been defined for Pol I in mammals, the selectivity factor SL1, and the upstream binding transcription factor (UBF), which interacts with the upstream control element to facilitate the assembly of the transcription initiation complex including SL1 and Pol I. In seven unrelated affected individuals, all suffering from developmental regression starting at 2.5-7 years, we identified a heterozygous variant, c.628G\u3eA in UBTF, encoding p.Glu210Lys in UBF, which occurred de novo in all cases. While the levels of UBF, Ser388 phosphorylated UBF, and other Pol I-related components (POLR1E, TAF1A, and TAF1C) remained unchanged in cells of an affected individual, the variant conferred gain of function to UBF, manifesting by markedly increased UBF binding to the rDNA promoter and to the 5\u27- external transcribed spacer. This was associated with significantly increased 18S expression, and enlarged nucleoli which were reduced in number per cell. The data link neurodegeneration in childhood with altered rDNA chromatin status and rRNA metabolism

    The role of tRNA synthetases in neurological and neuromuscular disorders.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNAs with their cognate amino acids, therefore essential for the first step in protein synthesis. Although the majority of protein synthesis happens in the cytosol, an additional translation apparatus is required to translate the 13 mitochondrial DNA-encoded proteins important for oxidative phosphorylation. Most ARS genes in these cellular compartments are distinct, but two genes are common, encoding aminoacyl-tRNA synthetases of glycine (GARS) and lysine (KARS) in both mitochondria and the cytosol. Mutations in the majority of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data indicate that impaired enzyme function could explain the pathogenicity, however not all pathogenic ARSs mutations result in deficient catalytic function; thus, the consequences of mutations may arise from other molecular mechanisms. The peripheral nerves are frequently affected, as illustrated by the high number of mutations in cytosolic and bifunctional tRNA synthetases causing Charcot-Marie-Tooth disease (CMT). Here we provide insights on the pathomechanisms of CMT-causing tRNA synthetases with specific focus on the two bifunctional tRNA synthetases (GARS, KARS)

    Leukoencephalopathy with accumulated succinate is indicative of <it>SDHAF1</it> related complex II deficiency

    No full text
    Abstract Background Deficiency of complex II (succinate dehydrogenase, SDH) represents a rare cause of mitochondrial disease and is associated with a wide range of clinical symptoms. Recently, mutations of SDHAF1, the gene encoding for the SDH assembly factor 1, were reported in SDH-defective infantile leukoencephalopathy. Our goal was to identify SDHAF1 mutations in further patients and to delineate the clinical phenotype. Methods In a retrospective data collection study we identified nine children with biochemically proven complex II deficiency among our cohorts of patients with mitochondrial disorders. The cohort comprised five patients from three families affected by SDH-defective infantile leukoencephalopathy with accumulation of succinate in disordered cerebral white matter, as detected by in vivo proton MR spectroscopy. One of these patients had neuropathological features of Leigh syndrome. Four further unrelated patients of the cohort showed diverse clinical phenotypes without leukoencephalopathy. SDHAF1 was sequenced in all nine patients. Results Homozygous mutations of SDHAF1 were detected in all five patients affected by leukoencephalopathy with accumulated succinate, but not in any of the four patients with other, diverse clinical phenotypes. Two sisters had a mutation reported previously, in three patients two novel mutations were found. Conclusion Leukoencephalopathy with accumulated succinate is a key symptom of defective complex II assembly due to SDHAF1 mutations.</p

    Deleterious Mutation in the Mitochondrial Arginyl–Transfer RNA Synthetase Gene Is Associated with Pontocerebellar Hypoplasia

    Get PDF
    Homozygosity mapping was performed in a consanguineous Sephardic Jewish family with three patients who presented with severe infantile encephalopathy associated with pontocerebellar hypoplasia and multiple mitochondrial respiratory-chain defects. This resulted in the identification of an intronic mutation in RARS2, the gene encoding mitochondrial arginine–transfer RNA (tRNA) synthetase. The mutation was associated with the production of an abnormally short RARS2 transcript and a marked reduction of the mitochondrial tRNAArg transcript in the patients’ fibroblasts. We speculate that missplicing mutations in mitochondrial aminoacyl-tRNA synthethase genes preferentially affect the brain because of a tissue-specific vulnerability of the splicing machinery
    corecore