2,071 research outputs found

    Inland fisheries: a valuable resource

    Get PDF
    The value of small-scale inland fisheries lies in its ability to provide essential protein, micronutrients, vitamins and fats for millions of people, particularly in developing countries

    Using event-related fMRI to examine sustained attention processes and effects of APOE ε4 in young adults

    Get PDF
    In this study we investigated effects of the APOE ε4 allele (which confers an enhanced risk of poorer cognitive ageing, and Alzheimer’s Disease) on sustained attention (vigilance) performance in young adults using the Rapid Visual Information Processing (RVIP) task and event-related fMRI. Previous fMRI work with this task has used block designs: this study is the first to image an extended (6-minute) RVIP task. Participants were 26 carriers of the APOE ε4 allele, and 26 non carriers (aged 18–28). Pupil diameter was measured throughout, as an index of cognitive effort. We compared activity to RVIP task hits to hits on a control task (with similar visual parameters and response requirements but no working memory load): this contrast showed activity in medial frontal, inferior and superior parietal, temporal and visual cortices, consistent with previous work, demonstrating that meaningful neural data can be extracted from the RVIP task over an extended interval and using an event-related design. Behavioural performance was not affected by genotype; however, a genotype by condition (experimental task/control task) interaction on pupil diameter suggested that ε4 carriers deployed more effort to the experimental compared to the control task. fMRI results showed a condition by genotype interaction in the right hippocampal formation: only ε4 carriers showed downregulation of this region to experimental task hits versus control task hits. Experimental task beta values were correlated against hit rate: parietal correlations were seen in ε4 carriers only, frontal correlations in non-carriers only. The data indicate that, in the absence of behavioural differences, young adult ε4 carriers already show a different linkage between functional brain activity and behaviour, as well as aberrant hippocampal recruitment patterns. This may have relevance for genotype differences in cognitive ageing trajectories

    Urban SAFE50: Modeling, Controlling, and Testing Safe UAS Operations in Low Altitude Settings

    Get PDF
    The research and development of UAVs (Unmanned Aerial Vehicles) are quickly progressing as industries and hobbyist societies recognize their utility. NASA is focused on the technology development and safety considerations surrounding commercial use of UAVs. Urban SAFE50 (Safe Autonomous Flight Environment within the notional last 50 feet of operation of 55 pound class UAS (Small Unmanned Aircraft Systems)) is focused on the necessary real-time decision algorithms and flight models prevalent in low-altitude, high-density city environments. Construction of on-board controls to respond to motor failure and wind dynamics as well as a database of computational flight models and battery discharge profiles will help policymakers to predict and regulate unmanned aircraft flight safely and effectively

    Mise en évidence de protéines révélant une réponse au stress adaptative divergente entre les espèces Dreissena polymorpha et Dreissena rostriformis bugensis

    Get PDF
    International audienceZebra mussels Dreissena polymorpha, are bivalve molluscs used in ecotoxicology, as a sentinel species with, among other things, a strong bioaccumulation capacity. The quagga mussel, Dreissena rostriformis bugensis, has more recently colonized Western Europe. Also invasive, it competes with zebra mussels for habitats and, in some areas, has completely replaced it. Its use as a sentinel species is envisaged but requires understanding the mechanisms involved during the adaptive stress response and comparing them to those of the zebra mussel, which are better characterized. With this in mind, an exposure of the two species to a classical contaminant was performed to compare their responses. The individuals were exposed to a concentration of 100 μg / L of cadmium for 7 days, and then the gill proteins were separated by two-dimensional electrophoresis and the variable abundance proteoforms were identified by mass spectrometry. The functional analysis reveals promising elements for the study of the adaptive response in both species. A difference of expression of actors of the energy metabolism pathways points a physiological difference, with a reallocation of energy as well as the appearance of truncated proteins.Les moules zébrées, Dreissena polymorpha sont des mollusques bivalves utilisés en écotoxicologie comme espèces sentinelles du fait, entre autre, de leur capacité de bioaccumulation. La moule quagga, Dreissena rostriformis bugensis, a colonisé plus récemment l'Europe occidentale. Egalement invasive, elle est en compétition avec la moule zébrée pour les habitats et, dans certaines zones, l'a complètement remplacée. Son utilisation en tant qu'espèce sentinelle est envisagée mais nécessite de comprendre les mécanismes mis en jeu au cours de la réponse adaptative au stress et de les comparer à ceux de la moule zébrée, mieux caractérisés. Dans cette optique, une exposition des deux espèces à un contaminant classique a été réalisée afin de comparer leurs réponses. Les individus ont été exposés à une concentration de 100μg/L de cadmium pendant 7 jours, puis les protéines des branchies ont été séparées par électrophorèse bidimensionnelle et les protéoformes d'abondance variable ont été identifiées par spectrométrie de masse. L'analyse fonctionnelle révèle des éléments prometteurs pour l'étude de la réponse adaptative chez les deux espèces. Une différence d'expression d'acteurs des voies du métabolisme énergétique pointe une différence physiologique, avec une réallocation de l'énergie ainsi que l'apparition de protéines tronquées

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic

    The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Get PDF
    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.Comment: 21 pages; 20 figures, Submitted to JCAP, some typos correcte

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    corecore