3,938 research outputs found

    CO excitation in four IR luminous galaxies

    Get PDF
    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds

    Electron Transfer Precedes ATP Hydrolysis during Nitrogenase Catalysis

    Get PDF
    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein

    Tests of the Las Campanas Distant Cluster Survey from Confirmation Observations for the ESO Distant Cluster Survey

    Full text link
    The ESO Distant Cluster Survey (EDisCS) is a photometric and spectroscopic study of the galaxy cluster population at two epochs, z~0.5 and z~0.8, drawn from the Las Campanas Distant Cluster Survey (LCDCS). We report results from the initial candidate confirmation stage of the program and use these results to probe the properties of the LCDCS. Of the 30 candidates targeted, we find statistically significant overdensities of red galaxies near 28. Of the ten additional candidates serendipitously observed within the fields of the targeted 30, we detect red galaxy overdensities near six. We test the robustness of the published LCDCS estimated redshifts to misidentification of the brighest cluster galaxy (BCG) in the survey data, and measure the spatial alignment of the published cluster coordinates, the peak red galaxy overdensity, and the brightest cluster galaxy. We conclude that for LCDCS clusters out to z~0.8, 1) the LCDCS coordinates agree with the centroid of the red galaxy overdensity to within 25'' (~150 h^{-1} kpc) for 34 out of 37 candidates with 3\sigma galaxy overdensities, 2) BCGs are typically coincident with the centroid of the red galaxy population to within a projected separation of 200 h^{-1} kpc (32 out of 34 confirmed candidates), 3) the red galaxy population is strongly concentrated, and 4) the misidentification of the BCG in the LCDCS causes a redshift error >0.1 in 15-20% of the LCDCS candidates. These findings together help explain the success of the surface brightness fluctuations detection method.Comment: 10 pages, 9 figures, accepted for publication in the November 10 issue of Ap

    First Asteroseismic Analysis of the Globular Cluster M80: Multiple Populations and Stellar Mass Loss

    Full text link
    Asteroseismology provides a new avenue for accurately measuring the masses of evolved globular cluster (GC) stars through the detection of their solar-like oscillations. We present the first detections of solar-like oscillations in 47 red giant branch (RGB) and early asymptotic giant branch (EAGB) stars in the metal-poor GC M80; only the second ever with measured seismic masses. We investigate two major areas of stellar evolution and GC science; the multiple populations and stellar mass-loss. We detected a distinct bimodality in the EAGB mass distribution. We showed that this is likely due to sub-population membership. If confirmed, it would be the first direct measurement of a mass difference between sub-populations. A mass difference was not detected between the sub-populations in our RGB sample. We instead measured an average RGB mass of 0.782\pm0.009~\msun, which we interpret as the average between the sub-populations. Differing mass-loss rates on the RGB has been proposed as the second parameter that could explain the horizontal branch (HB) morphology variations between GCs. We calculated an integrated RGB mass-loss separately for each sub-population: 0.12\pm0.02~\msun (SP1) and 0.25\pm0.02~\msun (SP2). Thus, SP2 stars have greatly enhanced mass-loss on the RGB. Mass-loss is thought to scale with metallicity, which we confirm by comparing our results to a higher metallicity GC, M4. We also find that M80 stars have insignificant mass-loss on the HB. This is different to M4, suggesting that there is a metallicity and temperature dependence in the HB mass-loss. Finally, our study shows the robustness of the Δν\Delta\nu-independent mass scaling relation in the low-metallicity (and low-surface gravity) regime.Comment: 20 pages, 11 figure

    USING THE WISDOM OF THE CROWD TO PREDICT POPULAR MUSIC CHART SUCCESS

    Get PDF
    Abstract The peculiarities of the recording industry system, such as fashion cycles, the hedonic nature of music, socionetwork effects, informa

    Negative Cooperativity in the Nitrogenase Fe Protein Electron Delivery Cycle

    Get PDF
    Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αβ half of the α2β2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αβ active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves

    The build-up of the colour-magnitude relation in galaxy clusters since z~0.8

    Get PDF
    Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour-magnitude relation has evolved since z~0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high redshift EDisCS clusters exhibit a significant "deficit" of faint red galaxies. Combining clusters in three different redshift bins, and defining as `faint' all galaxies in the range 0.4 > L/L* > 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z~0.8 to z~0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour-magnitude diagram of high redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved onto the red-sequence below z~0.8.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Gas6 Increases Myelination by Oligodendrocytes and Its Deficiency Delays Recovery following Cuprizone-Induced Demyelination

    Get PDF
    Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination

    Cerebrospinal Fluid NLRP3 is Increased After Severe Traumatic Brain Injury in Infants and Children

    Get PDF
    Background: Inflammasome-mediated neuroinflammation may cause secondary injury following traumatic brain injury (TBI) in children. The pattern recognition receptors NACHT domain-, Leucine-rich repeat-, and PYD-containing Protein 1 (NLRP1) and NLRP3 are essential components of their respective inflammasome complexes. We sought to investigate whether NLRP1 and/or NLRP3 abundance is altered in children with severe TBI. Methods: Cerebrospinal fluid (CSF) from children (n = 34) with severe TBI (Glasgow coma scale score [GCS] ≤8) who had externalized ventricular drains (EVD) placed for routine care was evaluated for NLRP1 and NLRP3 at 0-24, 25-48, 49-72, and >72 h post-TBI and was compared to infection-free controls that underwent lumbar puncture to rule out CNS infection (n = 8). Patient age, sex, initial GCS, mechanism of injury, treatment with therapeutic hypothermia, and 6-month Glasgow outcome score were collected. Results: CSF NLRP1 was undetectable in controls and detected in 2 TBI patients at only 4 (15.50 [3.65-25.71] vs. 3.04 [1.52-8.87] ng/mL, respectively; p = 0.048). Controlling for initial GCS in multivariate analysis, peak NLRP3 >6.63 ng/mL was independently associated with poor outcome at 6 months. Conclusions: In the first report of NLRP1 and NLRP3 in childhood neurotrauma, we found that CSF NLRP3 is elevated in children with severe TBI and independently associated with younger age and poor outcome. Future studies correlating NLRP3 with other markers of inflammation and response to therapy are warranted
    • …
    corecore