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Significance: Biological reduction of dinitrogen (N2) to ammonia (NH3) 

occurs in a select group of bacteria that contain the metalloenzyme 

nitrogenase. To catalyze this difficult reaction, nitrogenase requires electrons, 

protons, and ATP. From the earliest studies of nitrogenase, it was realized 

that ATP hydrolysis is coupled to delivery of electrons and reduction of N2, yet 

the order of ATP hydrolysis and electron transfer, which determines the 

nature of the coupling, was never established. In this work, we establish the 

order of all the key events during one catalytic cycle of electron delivery in 

nitrogenase, showing that ATP hydrolysis follows electron transfer. These 

findings guide future studies aimed at understanding what roles ATP binding 
and hydrolysis play in the nitrogenase mechanism. 

Keywords: nitrogen fixation, metalloprotein 

Abstract: The biological reduction of N2 to NH3 catalyzed by Mo-dependent 

nitrogenase requires at least eight rounds of a complex cycle of events 

associated with ATP-driven electron transfer (ET) from the Fe protein to the 

catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP 

molecules. Although steps within this cycle have been studied for decades, 

the nature of the coupling between ATP hydrolysis and ET, in particular the 

order of ET and ATP hydrolysis, has been elusive. Here, we have measured 

first-order rate constants for each key step in the reaction sequence, 

including direct measurement of the ATP hydrolysis rate constant: kATP = 70 

s−1, 25 °C. Comparison of the rate constants establishes that the reaction 

sequence involves four sequential steps: (i) conformationally gated ET (kET = 

140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate 

release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe 

protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the 

thermodynamic cycle undergone by the Fe protein, showing that the energy 

of ATP binding and protein–protein association drive ET, with subsequent ATP 
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hydrolysis and Pi release causing dissociation of the complex between the 
Feox(ADP)2 protein and the reduced MoFe protein. 

 

Biological nitrogen fixation catalyzed by the Mo-dependent 

nitrogenase has a limiting reaction stoichiometry shown in Eq. 1 (1, 

2): 

N2 + 8e− + 16MgATP + 8H+ → 2NH3 + H2 +  
16MgADP + 16Pi: 

[1] 

The ATP-driven reduction of one N2 with evolution of one H2 requires a 

minimum of 8 e− and the hydrolysis of 16 ATP molecules in a complex 

cascade of events in which electron transfer (ET) from the nitrogenase 

Fe protein to the catalytic MoFe protein is coupled to the hydrolysis of 

two ATP molecules (1, 3, 4). The Fe protein is a homodimer with a 

single [4Fe–4S] cluster and two nucleotide binding sites, one in each 

subunit (5). The MoFe protein is an α2β2-tetramer, with each αβ-pair 

functioning as a catalytic unit that binds an Fe protein (6). Each αβ-

unit contains an [8Fe–7S] cluster (abbreviated as P cluster) and a 

[7Fe–9S–Mo–C–R-homocitrate] cluster (abbreviated as FeMo cofactor 

or M cluster) (6–10). In each ET event, the Fe protein, in the reduced 

(1+) state with two bound ATP, first associates with the MoFe protein 

(Fig. 1). In a recent model, termed “deficit spending,” it is proposed 

that this association triggers a two-step ET event (11, 12). The first ET 

step occurs inside the MoFe protein, involving ET from the P cluster 

resting state (PN) to the resting FeMo cofactor (MN), resulting in an 

oxidized P cluster (P1+) and a reduced FeMo cofactor (MR) (12). This ET 

event is conformationally gated (11) with an apparent first-order rate 

constant (kET) between 100 and 140 s−1 (11, 12). In the second ET 

step, an electron is transferred from the Fe protein [4Fe–4S] cluster to 

the oxidized P1+ cluster, resulting in the return of the P cluster to the 

resting oxidation state (PN) and an oxidized [4Fe–4S]2+ cluster in the 

Fe protein (12). This second step is fast, having a rate constant 

greater than 1,700 s−1 (12). 
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Fig. 1. Order of events in nitrogenase complex. (A) Fe protein subunits are shown as 

two blue ovals (Left) with an ATP bound in each subunit and the [4Fe–4S] cluster 

(green cubane). (Right) MoFe protein α-subunit (orange) and β-subunit (green), with 

the PN cluster shown as a gray box and the FeMo cofactor (MN) shown as a gray 

diamond. (B) From left to right, order of events in the nitrogenase ET is shown with 

rate constants (s−1) displayed where known. 

Transfer of one electron from the Fe protein to an αβ-unit of 

MoFe protein is known to be coupled to the hydrolysis of the two ATP 

molecules bound to the Fe protein, yielding two ADP and two Pi (2). 

Following the hydrolysis reaction, the two phosphates (Pi) are released 

from the protein complex with a first-order rate constant (kPi) of 22 s−1 

at 23 °C (13). The last event in the cycle is the release of the oxidized 

Fe protein with two ADP bound [Feox(ADP)2] from the MoFe protein 

with a rate constant (kdiss) of ∼6 s−1, the rate-limiting step in catalysis 

at high electron flux (14). After dissociation from the MoFe protein, the 

[Feox(ADP)2] protein is prepared for a second round of electron delivery 

by one-electron reduction to [Fered(ADP)2] and replacement of the two 

MgADP by MgATP. This cycle is repeated until enough electrons are 

transferred to the MoFe protein to achieve substrate reduction (15). 

Although the energetic coupling between ET and ATP hydrolysis 

is firmly established (1, 3, 4, 16), the nature of this coupling has 

remained unresolved: does ATP hydrolysis itself provide the principal 

energy input for the conformational change(s) that drive ET from Fe 

protein to the MoFe protein, or, does the bound ATP induce the 

formation of a reactive, “activated” conformation of the complex, with 

ET being driven by the free energy of ATP-activated protein–protein 

binding? These alternatives are characterized by different orders of ET 

http://dx.doi.org/10.1073/pnas.1311218110
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig01/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r16


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 110, No. 41 (October 8, 2013): pg. 16414-16419. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

5 

 

and ATP hydrolysis, but the order has never been established. Some 

studies have indicated that ATP hydrolysis occurs after ET (13, 17, 

18), whereas other studies have suggested just the opposite, namely 

that ATP hydrolysis occurs before ET (15, 16, 19, 20). One of the 

reasons for this lack of clarity in the order of these key events is the 

absence of direct measurement of ATP hydrolysis rates by nitrogenase 

within a single catalytic cycle. The rate constant for Pi release during 

one cycle has been measured, thereby establishing a lower limit on the 

rate constant for ATP hydrolysis (13). However, the rate constant for 

ATP hydrolysis could be much faster than Pi release, and could be 

faster than the rate constant for ET. 

Here, we have directly measured the rate constant for ATP 

hydrolysis for a single nitrogenase turnover cycle, as well as 

measuring the rate constants for each of the other key steps under the 

same conditions, thereby allowing an unequivocal assignment of the 

order of events in a single electron-transfer cycle. Establishing the 

order of events allows a full thermodynamic Fe–protein cycle to be 

constructed. 

Results 

ATP Hydrolysis and Pi Release.  

The hydrolysis of the 2 ATP bound in the Fe protein to 2 ADP + 

2 Pi is initiated during the transient association of the Fe protein with 

the MoFe protein; ATP hydrolysis is not catalyzed by the Fe protein 

alone (1). Pre–steady-state rates of ATP hydrolysis during a single Fe–

MoFe protein association event have not been reported, although 

steady-state rates have been reported in several earlier studies, with 

typical rates ranging from 3,600 to 4,500 nmol⋅min−1⋅(mg MoFe 

protein)−1 (21). These prior steady-state measurements relied on 

quantification of released ADP or Pi over multiple turnovers, and thus 

provide little insight into the rate of ATP hydrolysis during the first 

turnover (21). 

Establishing a pre–steady-state rate for ATP hydrolysis is 

challenging, requiring quantification of ATP consumed and ADP formed 

on a millisecond time scale. To make this measurement, we used a 
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rapid chemical-quench approach to stop ATP hydrolysis at selected 

times after initiating the reaction, with an instrument dead-time of 4 

ms and time resolution of 1 ms. The ATP and ADP in each quenched 

solution were quantified by using [32P]ATP (labeled on the α-

phosphate) as a tracer. For each sample, ATP was separated from ADP 

by TLC, with quantification of each nucleotide accomplished by 

counting of the 32P. Using this approach, it was possible to establish 

the precise concentration of ADP formed as a function of time after 

initiating the reaction by rapid mixing (Fig. 2B). Over the time range 

examined (up to 200 ms), the quantity of ADP formed was observed to 

rise rapidly to a plateau. These data were initially fit to an exponential 

rise to maximum to get an estimated rate constant, which was found 

to be noticeably less than kET, and then the ATP hydrolysis data were 

fit to the kinetic model described in Materials and Methods (Eq. 2), 

yielding a rate constant for ATP hydrolysis, kATP = 70  7 s−1 at 25 °C. 
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Fig. 2. Kinetics of key nitrogenase catalytic steps. (A) ET is monitored as the change 
in absorbance at 430 nm as a function of time (open circles). The data were fit to the 

sequential kinetic model (Eq. 2) (line), with a calculated kET of 140 s−1. (B) ATP 
hydrolysis is monitored as the formation of α-32P-ADP as a function of time (closed 
circles). The data were fit to Eq. 2 (line), with a calculated kATP of 70 s−1. (C) Pi release 
is monitored by the increase in absorbance from Pi binding to the Pi binding protein as 
a function of time (open square). The data were fit to Eq. 2 (line), with a calculated kPi 
of 16 s−1. (D) Dissociation of Fe from the MoFe protein is monitored by the decrease in 
absorbance at 430 nm as a function of time (open triangle). The data were fit to a 

single-exponential equation (solid line) with a first-order rate constant (kdiss) of 6 s−1. 
All four experiments were carried out at the same experimental conditions at 25 °C. 

The rate constant for ATP hydrolysis determined here can be 

compared with the rate constant for Pi release. In earlier studies, pre–

steady-state Pi release was found to have a rate constant (kPi) of ∼22 

s−1, roughly threefold less than kATP (13). The conditions used in the 

earlier studies were different from the conditions used in the ATP 
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hydrolysis studies reported here, so the Pi release experiment was 

conducted under the same conditions used for the measurement of 

ATP hydrolysis. Pi release was detected by binding of the free Pi to a 

phosphate-binding protein labeled with a fluorescent reporter that 

shows a sevenfold increase in fluorescence upon Pi binding, thereby 

allowing real-time monitoring of Pi release using a stopped-flow (SF) 

fluorometer (Fig. 2C) (22). The concentration of Pi released as a 

function of time was fit to the kinetic model described in Materials and 

Methods (Eq. 2), yielding a rate constant kPi = 16 1 s−1, which is 

consistent with earlier reports. Fig. 2C shows that the kinetic model 

fits the Pi release data up to almost 150 ms quite satisfactorily, but it 

was also recognized that at later times the Pi release was more 

complex due to the achievement of a steady state. As indicated by the 

result kPi < kATP, and as visualized when the progress curves for ATP 

hydrolysis and Pi release are plotted together on a logarithmic time 

plot (Fig. 3), Pi is not released promptly upon ATP hydrolysis, but 

rather occurs as a subsequent kinetic step with a detectable delay 

after ATP hydrolysis. 
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Fig. 3. Time course for key steps in the nitrogenase cycle. The data for ET (○), ATP 

hydrolysis (●), and Pi release (•) are plotted as a function of the logarithm of time. 
Each data set was fit to the model in Eq. 2 (solid lines), with the calculated rate 
constants noted. The protein–protein dissociation is represented by a simulation 

(dashed green line) generated by using the kinetic model (Eq. 2), with rate constants 
fixed at kET = 140 s−1, kATP = 70 s−1, and kPi = 16 s−1. 

ATP Hydrolysis Compared with ET.  

The rate constant for ET from the Fe protein to the MoFe protein 

(kET) has been reported to be between 100 and 150 s−1 (23), 

depending on reaction conditions and the proteins used. This rate 

constant was reexamined in the present study under identical 

conditions to the Pi release and ATP hydrolysis measurements. ET is 

monitored by the absorbance increase that accompanies oxidation of 
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the Fe protein [4Fe–4S] cluster after initiation of the reaction (Fig. 

2A). Fit of these data to the kinetic model (Eq. 2) yields an apparent 

first-order rate constant of kET = 140 10 s−1. This rate constant 

reflects the oxidation of the Fe protein as an electron is delivered to 

the MoFe protein, a process recently shown to be gated by protein 

conformational changes (11). In the deficit-spending model of ET, the 

observed ET is the last ET event, following conformational gating and 

ET from the P cluster to FeMo cofactor (12). Thus, the observed first-

order rate constant of 140 s−1 reflects both protein conformational 

changes and all ET events. 

The rate constant for ATP hydrolysis of kATP = 70 s−1 is half that 

of the measured ET rate constant, clearly placing ATP hydrolysis as a 

distinct kinetic step that follows ET. The order of events is visualized 

by comparing ET, ATP hydrolysis, and Pi release data on a logarithmic 

time plot (Fig. 3): ET occurs first, followed by ATP hydrolysis, followed 

by Pi release. 

Protein–Protein Dissociation.  

Earlier studies have shown that Fe protein dissociation from the 

MoFe protein is the last event in the cycle, with a first-order rate 

constant (kdiss) ranging from 5 to 10 s−1 (14). We directly determined 

this dissociation rate constant, as described in Materials and Methods, 

under the same conditions as the other measurements (Fig. 2D), 

finding a first-order rate constant of kdiss = 6 2 s−1 from a fit to an 

exponential of the absorbance change associated with Feox(ADP)2 

reduction, subsequent to mixing of [Feox(ADP)2;MoFe], upon mixing. 

This value is consistent with protein–protein dissociation being a 

discrete kinetic step and the last event during the catalytic cycle. The 

dissociation event is simulated with the kinetic model (Eq. 2), by fixing 

the ET, ATP hydrolysis, Pi release, and dissociation rate constants. The 

simulation (presented as a rise to maximum) clearly places the 

dissociation as the last event in the series, in a kinetic step distinct 

from Pi release (Fig. 3). 

  

http://dx.doi.org/10.1073/pnas.1311218110
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig02/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig02/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#eq2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#s10
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig02/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#eq2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig03/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 110, No. 41 (October 8, 2013): pg. 16414-16419. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

11 

 

Discussion 

Model for Events in the Nitrogenase Cycle.  

The measurement of the pre–steady-state rate constant for ATP 

hydrolysis reported here defines the order of the key events involved 

in ET within the Fe protein–MoFe protein complex. As is evident in the 

kinetic progress curves shown in Fig. 3, the order of events is 

established as: (i) ET, (ii) ATP hydrolysis, (iii) Pi release, followed by 

(iv) dissociation of the Fe protein from the MoFe protein. 

The findings of the current study can be combined with earlier 

findings to construct a model of the key events that occur during one 

round of Fe protein–MoFe protein association (Fig. 4). The process 

begins with the formation of a complex between Fered(ATP)2 and an αβ-

catalytic unit of the MoFe protein (Fig. 4, upper left). This association 

is known to be fast, with a second-order rate constant (kassoc) of 5 × 

107 M−1⋅s−1 (24). At the concentration of Fe protein used in the present 

study, the association event is much faster than subsequent events, so 

all of the measurements described here correspond to first-order, 

intracomplex steps. Recent studies on the effects of osmotic pressure 

on the rate of ET have established that following protein–protein 

association, large-scale (∼800 Å2 changes in buried surface) 

conformational changes within the complex gate subsequent ET events 

(11). It has been suggested that these conformational changes result 

in activation of the P cluster to a state (PN*) that transfers an electron 

to FeMo cofactor, forming the oxidized P cluster (P1+). In this model, 

subsequent ET from Fered(ATP)2 to the oxidized P cluster is fast and not 

gated by protein conformational changes, and generates the final 

product of intracomplex ET, Feox(ATP)2 bound to MoFe protein 

containing a resting P cluster and one-electron reduced FeMo cofactor 

(MR). The overall rate constant for the multiple steps in the ET process 

is 140 s−1 (12). 
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Fig. 4. 
Model of nitrogenase order of events. Shown is the Fe protein (blue ovals) with the 
[4Fe–4S] cluster in the 1+ (dark green cube) or 2+ (yellow cube) oxidation state. The 
MoFe protein (α-subunit orange and β-subunit green) with the P cluster (rectangle, 

gray PN, red activated PN*, and yellow P+1 state) and the M cluster (diamond, gray MN 
and maroon MR state). The reaction sequence starts at top left with the association of 
the Fe protein with the MoFe protein and ends at top right with the dissociation of the 

oxidized Fe protein from the reduced MoFe protein. First-order rate constant (k, s−1) 
values for 25 °C are shown. Conformational changes in the Fe protein and MoFe 
protein are denoted by changes in shape of the ovals or rectangles. 

As established here, hydrolysis of the two ATP molecules to ADP 

and Pi occurs as a distinct kinetic step that follows this ET process. 
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Data shown in Fig. 3 further establish that Pi is not released from the 

protein–protein complex immediately upon ATP hydrolysis, but Pi is 

released in a distinct, subsequent step. It seems reasonable to 

conclude that upon ATP hydrolysis, the complex undergoes 

conformational changes, although the extent of such changes has not 

been established. Likewise, it seems reasonable that the release of Pi 

is accompanied by additional protein conformational changes, but 

again such changes have not been measured directly. 

The final step in the ET process is the release of the Feox(ADP)2 

from the one-electron reduced MoFe protein (Fig. 4) in a process that 

is not synchronous with Pi release, but follows as a discrete step with a 

rate constant of 6 s−1, as has been established in earlier studies (1, 

13, 14). The MoFe protein that contains a one-electron reduced FeMo 

cofactor is then free to be reduced additional times by repeating the 

process presented in Fig. 4, beginning with the binding of a second 

Fered(ATP)2 (15). The released Feox(ADP)2 is ready to be returned to 

the Fered(ADP)2 state by reduction of its [4Fe–4S]2+ cluster reduced 

back to the 1+ oxidation state, and replacement of ADP by ATP. 

The Fe–Protein Cycle.  

By revealing that intracomplex Fered(ATP)2 → MoFe protein ET is 

followed by ATP hydrolysis (Fig. 4), this work also completes the 

overall Fe–protein cycle, first formulated by Lowe and Thorneley to 

summarize the steps undergone by the Fe protein as it delivers an 

electron to the MoFe protein (1, 17). Fig. 5 presents the key Fe protein 

reactions formulated as a thermodynamic cycle. The cycle begins with 

free Feox(ADP)2 (Fig. 5, upper right), the final form of Fe protein at the 

end of a previous ET cycle, and ends with a return to this state upon 

completion of the cycle. Fig. 5 is further annotated to emphasize the 

function of the Fe protein as a nucleotide switch (25, 26) that uses ATP 

binding/hydrolysis to transport an electron from an electron 

source/reductant to the MoFe protein. Viewed in this way, Fig. 5 

introduces a correspondence of the thermodynamic cycle for ATP-

dependent electron transport by the Fe protein with the 

thermodynamic cycle for ATP-dependent substrate export by ATP-

binding cassette (ABC) transporters (27–30). 
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Fig. 5. Thermodynamic Fe–protein cycle. Drawn with a focus on Fe protein electron 
transport to MoFe protein, it can be viewed as starting at upper right. MoFered 
represents reduced MoFe protein. Dashed arrows and notation that surround the cycle 
refer to analogy with ABC exporter thermodynamic cycle. 

The Fe–protein cycle of Fig. 5 (top, right to left) begins with the 

reduction of Feox(ADP)2 to Fered(ADP)2, which triggers rapid 

replacement of the 2 ADP by 2 ATP (1, 17). The structure of the Fe 

protein undergoes major changes upon ATP binding, leading to 

numerous changes in its properties. However, historically, interest has 

focused on an ∼−120-mV change in the reduction potential of the 

[4Fe–4S] cluster of nucleotide-free Fe protein upon ATP binding, and 

the possibility that this change in potential is central to initiating the 

transfer of an electron to MoFe protein. Although the more negative 

midpoint potential would favor ET (1), for present purposes note (Fig. 

5) that the second step in the thermodynamic Fe–protein cycle is not 

ATP binding to free Fe protein, but replacement of bound ADP by ATP. 

Namely, the free Fered does not appear in the thermodynamic cycle 

regardless of the mechanistic details of the nucleotide interchange. In 

fact, the reduction potentials of Feox(ADP)2 to Fered(ADP)2 are the same 

(31). As a result, ATP/ADP exchange is isopotential, and so the 

potential lowering upon nucleotide binding cannot contribute to the 

thermodynamic coupling between ET and ATP binding and hydrolysis. 
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The MoFe protein catalytic unit next binds to Fered(ATP)2 to form 

the ET-active [Fered(ATP)2:MoFe] complex (Fig. 5, down arrow on the 

left) in a process that changes the Fe protein reduction potential by 

∼−200 mV (32), presumably through desolvation of its negatively 

charged [4Fe–4S] cluster (33), thereby preparing the 

[Fered(ATP)2;MoFe] complex for interprotein transport of the electron 

via gated, deficit-spending ET, ATP hydrolysis, Pi release, and 

subsequent complex dissociation. In the absence of a known ordering 

of these steps, two alternative proposals have been considered to 

explain the coupling of ET to ATP binding and hydrolysis. In one, ATP 

hydrolysis itself provides the principal energy input for the 

conformational change(s) that drive Fered → MoFe protein ET; in the 

other, the bound ATP induces the formation of a reactive, activated 

conformation of the complex, and it is the free energy of ATP-activated 

protein-protein binding that drives ET. The present measurements of 

the rate constants for all of the key steps discriminate between these 

two alternatives, and in doing so shed further light on the energy 

transduction through ATP hydrolysis: (i) That the ATP hydrolysis is 

temporally decoupled from and follows ET. Fig. 3 shows that ET is not 

driven by the free energy of ATP hydrolysis, and that it must be the 

ATP-dependent free energy of protein–protein binding that drives ET. 

(ii) ATP hydrolysis and Pi release occur as temporally separated steps, 

both of which precede the dissociation of the product 

[Feox(ADP)2;MoFered] complex (Fig. 4) (13). This demonstrates that 

both hydrolysis and Pi release are required to completely relax the 

conformationally activated complex, thereby inducing dissociation of 

the Fe protein from the reduced MoFe and completing the cycle. A 

similar sequence of steps was incorporated in the detailed 

thermodynamic analysis of nitrogenase ET and ATP hydrolysis by 

Kurnikov et al. (33). They showed that the contribution to the free 

energy for ET that is derived from formation of the [Fered(ATP)2;MoFe] 

complex becomes a stabilization free energy for binding of MoFered to 

Feox(ATP)2, and that subsequent ATP hydrolysis and Pi release is 

required to relax the complex and drive the two proteins apart. 

Viewed in this way, the Fe protein thermodynamic cycle is 

analogous to the four-step thermodynamic cycle of the ABC 

transmembrane substrate transporters, in particular the exporter 

subclass (27–30). These transporters catalyze substrate transport by a 

process dependent on conformational changes driven by ATP binding, 
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with the system being reset for another cycle by ATP hydrolysis. The 

ABC trans(ex)porter cycle begins with binding of the substrate to the 

protein, which triggers ATP binding (Step I); in nitrogenase the 

analogous step is electron binding by Feox(ADP)2 protein, namely 

reduction to Fered(ADP)2, followed by exchange of ADP by ATP. In the 

transporters, ATP binding free energy drives a sequence of 

conformational changes that results in an activated state that 

undergoes transmembrane substrate transport (Step II); in 

nitrogenase, ATP binding free energy drives the formation of an 

activated [Fered(ATP)2;MoFe] complex that undergoes deficit-spending 

Fered → MoFe electron transport. In the transporters, ATP hydrolysis to 

ADP and subsequent Pi release (Step III) elicit conformational 

relaxation (Step IV), thereby “resetting” the transporter for another 

catalytic cycle; in nitrogenase, ATP hydrolysis and subsequent Pi 

release relax the tightly bound [Feox(ATP)2;MoFered] complex, resulting 

in dissociation of the reduced MoFe protein (33), leaving the 

Feox(ADP)2 protein ready for another Fe–protein cycle. Thus, the 

concept of Fe protein as a nucleotide switch must be expanded to 

include the idea that the Fe protein–MoFe protein complex toggles 

through two conformational states–activated to achieve ET, and 

relaxed—following ATP hydrolysis and Pi release to achieve complex 

dissociation. 

Nucleotide-Dependent Structural Changes.  

How do nucleotide-dependent changes in the conformation of 

the [Fe; MoFe] complex drive ET? The X-ray structures of Fe–MoFe 

protein complexes with a suite of nucleotides (34), including 

nucleotide-free, ADP-bound, the ATP analog β-γ-methylene ATP 

(AMPPCP)-bound, and the ATP-hydrolysis transition state represented 

by ADP–AlF4
−-bound complex, have suggested progressive changes in 

the structure of Fe protein accompanied by rearrangement at the 

protein–protein interface as a function of nucleotide state. We 

interpreted the osmotic-pressure dependence of the observed Fered → 

MoFe ET process as reflecting motions of the Fe protein relative to 

MoFe (11), consistent with the crystallographic demonstration that 

changes in nucleotide state drive large changes in the buried protein–

protein interface area (34). However, it must be that activation for ET 
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includes conformational changes within the MoFe protein that have yet 

to be observed in crystal structures. 

Neither the structure of the complex that binds the ATP analog, 

AMPPCP, nor that of the complex that binds the analog for the 

transition state of ATP hydrolysis, ADP–AlF4
−, shows any significant 

perturbations within the MoFe protein relative to isolated MoFe protein. 

However, the ABC-transporter-like mechanism encapsulated in the 

cycle of Fig. 5 offers a possible resolution to this puzzle. As ATP 

hydrolysis/Pi release occurs only after ET, and thus only contributes to 

relaxation of the activated conformational state associated with the 

ATP complex, there is no requirement that the transition state for ATP 

hydrolysis be associated with a high-energy state within the MoFe 

protein. 

Two further observations can be considered regarding the 

absence of changes within the MoFe protein in the structure of the 

AMPPCP-bound complex: (i) AMPPCP in fact is not a truly faithful ATP 

analog in the nitrogenase system, as shown by the inability to promote 

proper ET and (ii) as the deficit-spending ET process is 

conformationally gated, it may well be that the anticipated state in 

which FeMo cofactor and its environs are activated for substrate 

reduction are only formed by a conformational fluctuation and never 

exists in high occupancy for trapping and direct characterization. 

Summary 

By establishing the pre–steady-state rate constant for ATP 

hydrolysis in nitrogenase catalysis, the order of sequential events in 

the nitrogenase cycle is established to be (i) conformationally gated 

ET, (ii) ATP hydrolysis, (iii) Pi release, and finally (iv) Fe protein 

dissociation from the MoFe protein. Establishing this order of events 

provides insights into the functions of ATP in the nitrogenase 

mechanism, showing that it is the free energy of ATP binding and 

protein–protein association that control the ET events, with ATP 

hydrolysis and Pi release causing dissociation of the reduced MoFe 

protein from the Feox(ADP)2 protein. 

  

http://dx.doi.org/10.1073/pnas.1311218110
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/figure/fig05/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 110, No. 41 (October 8, 2013): pg. 16414-16419. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

18 

 

Materials And Methods 

Materials, Protein Purification, and Activity Assays.  

All reagents, unless stated otherwise, were purchased from 

Sigma Aldrich Chemicals. Nitrogenase proteins were expressed in 

Azotobacter vinelandii strain DJ995 (wild-type MoFe protein with His 

tag), and DJ884 (wild-type Fe protein) as described previously (35). 

The MoFe protein contained a seven-histidine tag near the carboxyl 

terminus of the α-subunit allowing purification using the previously 

described metal affinity chromatography method (35). Fe protein was 

purified using ion exchange and size-exclusion liquid chromatography 

methods (35, 36). Both proteins were greater than 95% pure based on 

SDS–polyacrylamide gel electrophoresis separation followed by 

Coomassie blue staining. Manipulation of proteins was done in septum-

sealed serum vials under argon atmosphere. All transfers of gases and 

liquids were done using gastight syringes. 

SF Spectrophotometry and the Oxidation of Fe Protein.  

SF spectrophotometry was performed at 25 °C with a Hi-Tech 

SF61 SF UV-visible spectrophotometer equipped with data acquisition 

software. The SF unit of the spectrophotometer was housed inside a 

nitrogen-filled glove box (< 5 ppm O2). The temperature during the 

experiments was controlled by a circulating water bath housed outside 

the glove box (18). In these experiments, 75 µM Fe and 20 µM MoFe 

protein were contained in one drive syringe whereas the other syringe 

contained 18 mM MgCl2 and 10 mM ATP. Both syringes contained 

buffer [100 mM Hepes (pH 7.4) and 10 mM sodium dithionite]. 

Primary ET from the Fe protein to the MoFe protein was monitored by 

an increase in absorbance at 430 nm that occurs as the [4Fe–4S] 

cluster of the Fe protein becomes oxidized during turnover within the 

[Fered(ATP)2;MoFe] complex. 

The data were fit using KinTech Explorer (KinTek Corp.) to a 

sequential A → B → C → D → E kinetic model (Eq. 2). 

 

http://dx.doi.org/10.1073/pnas.1311218110
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r35
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r35
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r35
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r36
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#r18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799366/#eq2


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the national Academy of Sciences, Vol. 110, No. 41 (October 8, 2013): pg. 16414-16419. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

19 

 

[Fered(ATP)2; MoFe] 
𝑘ET

⟶
 [FeOX(ATP)2; MoFered] 

𝑘ATP

⟶
  

[FeOX(ADP, Pi)2; MoFered] 

 
𝑘Pi

⟶
 [FeOX(ADP)2; MoFered] + 2Pi

 𝑘diss

⟶
[FeOX(ADP)2] + [MoFered]  

[2] 

In this model, kET, kATP, kPi, and kdiss are the rate constants for ET, ATP 

hydrolysis, Pi release, and [Feox(ADP)2;MoFe] complex dissociation, 

respectively. All steps of the ET process can be taken as irreversible 

except for ATP hydrolysis, and here the rate constant for the reverse 

reaction is so low that the reverse process can be ignored in the 

present experiments (1, 17). As a result the sequential model of Eq. 2 

is appropriate (in the fitting process all reverse rate constants are set 

to a value of zero). To fit the ET data, the other rate constants were 

fixed at kATP = 70 s−1, kPi = 16 s−1, and kdiss = 6 s−1. 

Quench-Flow Studies for ATP Hydrolysis.  

Pre–steady-state ATP hydrolysis assays were performed at 

25 °C on a rapid chemical quench-flow instrument (KinTek Corp.) 

housed in a nitrogen-filled glove box (< 5 ppm O2). An 18-µL volume 

of 10 µM MoFe and 20 µM Fe (syringe A) was mixed with an 18-µL 

volume of 1 mM ATP with [α-32P]ATP (1.5 µCi) from syringe B, with 

varying times of reaction. Reactions were rapidly quenched with 45 µL 

0.5 M EDTA added from syringe C. Aliquots (0.9 µL) of the quenched 

reaction were spotted onto a TLC plate and developed in 0.6 M 

potassium Pi buffer, pH 3.4, for 45 min. The [α-32P]ATP and the [α-
32P]ADP were detected with a Storm PhosphorImager (Molecular 

Dynamics) and quantified using the ImageQuant software (Molecular 

Dynamics). The data were fit to the kinetic model (Eq. 2), with fixed 

values of kET = 140 s−1, kPi = 16 s−1, and kdiss = 6 s−1. 

Kinetics of Inorganic Pi Release.  

The time course of Pi release was determined in a SF 

fluorometer (Auto SF-120, KinTek Corp.) using the coumarin (N-[2-(1-
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maleimidyl)ethyl]-7-(diethylamino) coumarin-3-carboxamide) labeled 

phosphate binding protein assay (22). Briefly, Pi binding to MDCC-PBP 

results in an increase in fluorescence (13, 22) (λ-excitation = 430 nm, 

λ-emission >450 nm). The experiments were carried out at 25 °C in 

SF buffer (0.5 mM sodium dithionite and 25 mM Hepes; pH 7.4). 

Before each experiment, the SF syringes and flow lines were treated 

with a Pi mop (SF-buffer with 300 µM 7-methylguanine (7-meG), and 

0.2 units/mL purine nucleoside phosphorylase (PNPase) for 15 min to 

remove contaminating Pi (22) and then rinsed with buffer. Two µM 

MoFe and 6 µM Fe were rapidly mixed with a solution of 10 µM MDCC-

PBP, 20 mM MgCl2 and 2mM ATP and the change in fluorescence was 

monitored over time. A control time course, conducted without 

nitrogenase, was used to correct for the presence of contaminating Pi. 

MDCC-PBP fluorescence enhancement was converted to [Pi] after 

calibration in the SF using [KH2PO4] standards as described (22). The 

Pi release data were fit to the sequential kinetic model (Eq. 2) with kET 

= 140 s−1, kATP = 70 s−1, and kdiss = 6 s−1 fixed. 

The Fe Protein–MoFe Protein Dissociation Rate 

Constant.  

The dissociation of the Fe protein from the MoFe protein was 

determined by following the release of the Fe protein from the MoFe 

protein in the SF spectrophotometer. Feox(ADP)2 is not reduced by 

dithionite within the [Feox(ADP)2;MoFe] complex. Thus, the rate 

constant for the dissociation of the [Feox(ADP)2;MoFe] complex was 

determined by measuring the decrease in absorbance at 430 nm 

during the reduction of Feox to Fered by dithionite after Feox(ADP)2 

dissociates from the MoFe protein (14). Rate constant for dissociation 

was determined by fitting the data to a single-exponential equation 

(Eq. 3): 

A=e-k(diss)t, 

[3] 

where A is the amplitude of the absorbance change and kdiss is the rate 

constant for dissociation of the complex. Sodium dithionite was 

removed from the as-isolated MoFe and Fe proteins and exchanged 
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into 50 mM Hepes buffer with 200 mM NaCl, pH 7.4, by passage over 

a Sephadex G-25 column. Oxidized Fe protein was generated by 

adding increments of a 25-mM Indigo disulfonate (IDS) solution to the 

Fe protein until a blue color remained. The excess IDS was removed 

by passing the sample over a Dowex ion-exchange resin and Sephadex 

G-25 column equilibrated with 50 mM Hepes buffer, pH 7.4. For each 

experiment, syringe A contained 40 µM Feox protein, 40 µM MoFe 

protein, 5 mM MgADP in 50 mM Hepes buffer, pH 7.4, and syringe B 

contained 200 µM Fered protein, and 20 mM sodium dithionite in 50 mM 

Hepes buffer, pH 7.4. 
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