504 research outputs found

    Subspace confinement : how good is your qubit?

    Get PDF
    The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment

    Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice.

    Get PDF
    The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS

    Regulatory T cells control the dynamic and site-specific polarization of total CD4 T cells following Salmonella infection

    Get PDF
    FoxP3+ regulatory T cells (Tregs) control inflammation and maintain mucosal homeostasis, but their functions during infection are poorly understood. Th1, Th2, and Th17 cells can be identified by master transcription factors (TFs) T-bet, GATA3, and RORγT; Tregs also express these TFs. While T-bet+ Tregs can selectively suppress Th1 cells, it is unclear whether distinct Treg populations can alter Th bias. To address this, we used Salmonella enterica serotype Typhimurium to induce nonlethal colitis. Following infection, we observed an early colonic Th17 response within total CD4 T cells, followed by a Th1 bias. The early Th17 response, which contains both Salmonella-specific and non-Salmonella-specific cells, parallels an increase in T-bet+ Tregs. Later, Th1 cells and RORγT+ Tregs dominate. This reciprocal dynamic may indicate that Tregs selectively suppress Th cells, shaping the immune response. Treg depletion 1–2 days post-infection shifted the early Th17 response to a Th1 bias; however, Treg depletion 6–7 days post-infection abrogated the Th1 bias. Thus, Tregs are necessary for the early Th17 response, and for a maximal Th1 response later. These data show that Tregs shape the overall tissue CD4 T cell response and highlight the potential for subpopulations of Tregs to be used in targeted therapeutic approaches

    Quantifying the 3D structure and function of porosity and pore space in natural sediment flocs

    Get PDF
    Purpose: Flocculated cohesive suspended sediments (flocs) play an important role in all aquatic environments, facilitating the transport and deposition of sediment and associated contaminants with consequences for aquatic health, material fluxes, and morphological evolution. Accurate modelling of the transport and behaviour of these sediments is critical for a variety of activities including fisheries, aquaculture, shipping, and waste and pollution management and this requires accurate measurement of the physical properties of flocs including porosity. Methods: Despite the importance of understanding floc porosity, measurement approaches are indirect or inferential. Here, using μCT, a novel processing and analysis protocol, we directly quantify porosity in natural sediment flocs. For the first time, the complexity of floc pore spaces is observed in 3-dimensions, enabling the identification and quantification of important pore space and pore network characteristics, namely 3D pore diameter, volume, shape, tortuosity, and connectivity. Results: We report on the complexity of floc pore space and differentiate effective and isolated pore space enabling new understanding of the hydraulic functioning of floc porosity. We demonstrate that current methodological approaches are overestimating floc porosity by c. 30%. Conclusion: These new data have implications for our understanding of the controls on floc dynamics and the function of floc porosity and can improve the parameterisation of current cohesive sediment transport models

    Small scale energy release driven by supergranular flows on the quiet Sun

    Get PDF
    In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results

    Uric acid: an old actor for a new role

    Get PDF
    The role of uric acid as an independent risk factor for cardiovascular events is still debated. In fact, other confounding factors such as glucose intolerance, obesity, dyslipidaemia, hypertension, use of diuretics and insulin resistance may play a role in determining the increased vascular risk associated to elevated uric acid concentrations. These factors (including high uric acid) have been mentioned in one or more definitions of the metabolic syndrome. Recently, much attention has been paid to the metabolic syndrome due to its possible role as a risk factor for the development of type 2 diabetes and cardiovascular disease. The worldwide increase in the prevalence of obesity and diabetes is a reason not only for the increasing prevalence of the metabolic syndrome but also of hyperuricaemia. A better understanding of the role of uric acid in health and in disease states may help physicians to improve their performance in preventing and treating cardiovascular disease

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1

    Approach to equilibrium for a class of random quantum models of infinite range

    Full text link
    We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalization allows a neat extension from the class l1l_1 of absolutely summable lattice potentials to the optimal class l2l_2 of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l1l_1 case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l2l_2 in the Bernoulli case. Open problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys., corrects some minor errors and includes additional references and comments on the relation to experiment

    Microevolution during the emergence of a monophasic Salmonella Typhimurium epidemic in the United Kingdom

    Get PDF
    Microevolutionary events associated with the emergence and clonal expansion of new 27 epidemic clones of bacterial pathogens hold the key to understanding the drivers of 28 epidemiological success. We describe a comparative whole genome sequence and 29 phylogenomic analysis of monophasic Salmonella Typhimurium isolates from the UK 30 and Italy from 2005-2012. Monophasic isolates from this time formed a single clade 31 distinct from recent monophasic epidemic clones described previously from North 32 America and Spain. The current UK monophasic epidemic clones encode a novel 33 genomic island encoding resistance to heavy metals (SGI-3), and composite transposon 34 encoding antibiotic resistance genes not present in other Typhimurium isolates, that 35 may have contributed to the epidemiological success. We also report a remarkable 36 degree of genotypic variation that accumulated during clonal expansion of a UK 37 epidemic including multiple independent acquisitions of a novel prophage carrying the 38 sopE gene and multiple deletion events affecting the phase II flagellin locus

    Medicines as common commodities or powerful potions? What makes medicines reusable in people’s eyes

    Get PDF
    Abstract: Background: Medicines reuse involves dispensing quality-checked, unused medication returned by one patient for another, instead of disposal as waste. This is prohibited in UK com-munity pharmacy because storage conditions in a patient’s home could potentially impact on the quality, safety and efficacy of returned medicines. Our 2017 survey examining patients’ intentions to reuse medicines found many favoured medicines reuse. Our aim was to analyse the qualitative comments to explore people’s interpretations of what makes medicines (non-)reusable. Methods: Thematic analysis was used to scrutinize 210 valid qualitative responses to the survey to deline-ate the themes and super-ordinate categories. Results: Two categories were “medicines as com-mon commodities” versus “medicines as powerful potions”. People’s ideas about medicines aligned closely with other common commodities, exchanged from manufacturers to consumers, with many seeing medicines as commercial goods with economic value sanctioning their reuse. Fewer of the comments aligned with the biomedical notion of medicines as powerful potions, regulated and with legal and ethical boundaries limiting their (re)use. Conclusion: People’s pro-medicines-reuse beliefs align with perceptions of medicines as common commodities. This helps explain why patients returning their medicines to community pharmacies want these to be recycled. It could also explain why governments permit medicines reuse in emergencies
    corecore