132 research outputs found

    Probing the effect of point defects on the leakage blocking capability of Al0.1Ga0.9N/Si structures using a monoenergetic positron beam

    Get PDF
    Vacancy-type defects in Al0.1Ga0.9N were probed using a monoenergetic positron beam. Al0.1Ga0.9N layers with different carbon doping concentrations ([C] = 5 x 10(17) -8 x 10(19) cm(-3)) were grown on Si substrates by metalorganic vapor phase epitaxy. The major defect species in Al0.1Ga0.9N was determined to be a cation vacancy (or cation vacancies) coupled with nitrogen vacancies and/or with carbon atoms at nitrogen sites (C(N)s). The charge state of the vacancies was positive because of the electron transfer from the defects to C-N-related acceptors. The defect charge state was changed from positive to neutral when the sample was illuminated with photon energy above 1.8 eV, and this energy range agreed with the yellow and blue luminescence. For the sample with high [C], the charge transition of the vacancies under illumination was found to be suppressed, which was attributed to the trapping of emitted electrons by C-N-related acceptors. With increasing [C], the breakdown voltage under the reverse bias condition increased. This was explained by the trapping of the injected electrons by the positively charged vacancies and C-N-related acceptors

    The Beach Rehabilitation Project at Ostend, Belgium

    Get PDF
    Steady erosion has occurred on the beaches at Ostend, Belgium, especially on the section between the Casino and the Harbour Entrance. The gravel beach supported by a sandfill core has been proven to be a feasible and cost effective flood protection alternative, the first objective of the long term beach enhancement programme. secondary goals are also met such as: new beach recreational facilities in safe conditions for the public ; the economic incentive for the needed redevelopment of this part of down-town Ostend and the beach front; the conservation of the present sea-view from the promenade

    De haven van Zeebrugge, ontstaan en uitbouw

    Get PDF

    Carbon-related defects in Si:C/silicon heterostructures assessed by deep-level transient spectroscopy

    Get PDF
    This paper reports on a Deep-Level Transient Spectroscopy (DLTS) study of the electrically active defects in similar to 100 nm Si: C stressors, formed by chemical vapor deposition on p-type Czochralski silicon substrates. In addition, the impact of a post-deposition Rapid Thermal Annealing (RTA) at 850 degrees C on the DLT-spectra is investigated. It is shown that close to the surface at least two types of hole traps are present: one kind exhibiting slow hole capture, which may have a partial extended defect nature and a second type of hole trap behaving like a point defect. RTA increases the concentration of both hole traps and, in addition, introduces a point defect at EV + 0.35 eV in the depletion region of the silicon substrate at some distance from the Si: C epi layer. This level most likely corresponds with CiOi-related centers. Finally, a negative feature is found systematically for larger reverse bias pulses, which could point to a response of trap states at the Si: C/silicon hetero-interface

    Trap-assisted tunnelling and Shockley-Read-Hall lifetime of extended defects in In.53Ga.47As p+n junction

    Get PDF
    Several In.53Ga.47As p+n junctions with various extended defect densities (EDDs) have been grown by metalorganic vapor phase epitaxy (MOVPE), by carefully controlling the growth conditions. After fabrication, T-dependent J-V, C-V and double DLTS (DDLTS) are performed to extract the electrical field dependence of the extended defect levels. From this characterization, it is derived that the extended defects dominate the electrical field enhancement factor Gamma regardless of the value of the EDD and significantly increases the leakage current under reverse bias (i.e., decrease the Shockley-Read-Hall lifetime). These impacts are strongly connected to a "band-like" density of states of extended defects E2 at E-C-0.32 eV by comparing the DDLTS and T-dependent J-V characteristics. On the other hand, the reference sample (without EDs) surprisingly exhibits an even stronger field dependence with lower leakage current. Nevertheless, no straightforward candidate point defects can be found in this sample and the possible explanation are discussed

    Study of electrically active defects in epitaxial layers on silicon

    Get PDF
    Electrically active defects in silicon-based epitaxial layers on silicon substrates have been studied by Deep-Level Transient Spectroscopy (DLTS). Several aspects have been investigated, like, the impact of the pre-epi cleaning conditions and the effect of a post-deposition anneal on the deep-level properties. It is shown that the pre-cleaning thermal budget has a strong influence on the defects at the substrate/epi layer interface. At the same time, a post-deposition Forming Gas Anneal can passivate to a large extent the active defect states. Finally, it is shown that application of a post-deposition anneal increases the out-diffusion of carbon from a Si:C stressor layer into the p-type CZ substrate

    Low-frequency noise assessment of work function engineering cap layers in high-k gate stacks

    Get PDF
    Engineering the effective work function of scaled-down devices is commonly achieved by the implementation of capping layers in the gate stack. Typical cap layers are Al2O3 for pMOSFETs and La-oxide or Mg for nMOSFETs. Besides introducing a dipole layer at the SiO2/high-κ interface, the in-diffusion of the metal ions may lead to either passivation or generation of traps in the SiO2/high-κ layer. This paper uses low frequency noise studies to determine the impact of capping layers on the quality of the SiO2/HfO2 gate stacks. The influence on the trap profiles of different types of cap layers, different locations of the cap layer (below or on top of the HfO2 dielectric) and the impact of different thermal budgets, typically used for the fabrication of Dynamic Random Access Memory (DRAM) logic devices, are investigated. The differences between several metal oxides are outlined and discussed

    On the origin of the 1/f noise in shallow germanium p(+)-n junctions

    Get PDF
    The low-frequency noise of shallow germanium p(+)-n junctions is studied, for diodes with or without a nickel-germanide Ohmic contact. It is shown that the application of NiGe not only reduces the series resistance, resulting in a higher forward current, but also results in a lower 1/f noise at forward bias. From the observed geometry dependence, it is concluded that germanidation suppresses the 1/f noise generated in the series resistance, leaving surface-state-assisted generation-recombination at the junction perimeter as the dominant flicker noise source
    corecore