9 research outputs found

    Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway

    Get PDF
    Many publications make use of opportunistic data, such as citizen science observation data, to infer large-scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS-telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat-use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat-use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat-use studiespublishedVersio

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Cue identification in phenology: A case study of the predictive performance of current statistical tools

    No full text
    1. Changes in the timing of life‐history events (phenology) are a widespread consequence of climate change. Predicting population resilience requires knowledge of how phenology is likely to change over time, which can be gained by identifying the specific environmental cues that drive phenological events. Cue identification is often achieved with statistical testing of candidate cues. As the number of methods used to generate predictions increases, assessing the predictive accuracy of different approaches has become necessary. 2. This study aims to (a) provide an empirical illustration of the predictive ability of five commonly applied statistical methods for cue identification (absolute and relative sliding time window analyses, penalized signal regression, climate sensitivity profiles and a growing degree‐day model) and (b) discuss approaches for implementing cue identification methods in different systems. 3. Using a dataset of mean clutch initiation timing in wild great tits (Parus major), we explored how the days of the year identified as most important, and the aggregate statistic identified as a cue, differed between statistical methods and with respect to the time span of data used. Each method's predictive capacity was tested using cross‐validation and assessed for robustness to varying sample size. 4. We show that the identified critical time window of cue sensitivity was consistent across four of the five methods. The accuracy and precision of predictions differed by method with penalized signal regression resulting in the most accurate and most precise predictions in our case. Accuracy was maximal for near‐future predictions and showed a relationship with time. The difference between predictions and observations systematically shifted across the study from preceding observations to lagging. 5. This temporal trend in prediction error suggests that the current statistical tools either fail to capture a key component of the cue–phenology relationship, or the relationship itself is changing through time in our system. These two influences need to be teased apart if we are to generate realistic predictions of phenological change. We recommend future phenological studies to challenge the idea of a static cue–phenology relationship and should cross‐validate results across multiple time periods

    Phenological asynchrony: a ticking time‐bomb for seemingly stable populations?

    No full text
    Climate change has been shown to induce shifts in the timing of life‐history events. As a result, interactions between species can become disrupted, with potentially detrimental effects. Predicting these consequences has proven challenging. We apply structured population models to a well‐characterised great tit‐caterpillar model system and identify thresholds of temporal asynchrony, beyond which the predator population will rapidly go extinct. Our model suggests that phenotypic plasticity in predator breeding timing initially maintains temporal synchrony in the face of environmental change. However, under projections of climate change, predator plasticity was insufficient to keep pace with prey phenology. Directional evolution then accelerated, but could not prevent mismatch. Once predator phenology lagged behind prey by more than 24 days, rapid extinction was inevitable, despite previously stable population dynamics. Our projections suggest that current population stability could be masking a route to population collapse, if high greenhouse gas emissions continue

    Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics

    No full text
    Global climate change is altering the timing of life history events for species living in seasonal environments. These shifts in phenology can lead to the disruption of interspecific relationships with implications for individual fitness. Predicting phenological change and its population level consequences can provide insights into population persistence. Achieving this is challenging for labile traits as current structured population models do not explicitly distinguish between the roles of phenotypic plasticity and micro‐evolution, hindering realistic predictions of trait change. In this study we present the first empirical test of a new integral projection model (IPM) framework, which allows phenotypic plasticity and micro‐evolution to be teased apart by incorporating a quantitative genetic inheritance function. We parameterise this model for a population of wild great tits Parus major and test its predictive capabilities through K‐fold cross validation. We test the predictive accuracy of the quantitative genetic IPM in comparison to the standard IPM. We demonstrate that adding genetic inheritance rules maintains high accuracy of projections of phenological change, relative to the standard IPM. In addition, we find almost identical projections of population dynamics in this population for both IPMs, demonstrating that this model formulation allows researchers to investigate the contributions of phenotypic plasticity and micro‐evolution to trait change, without sacrificing predictive accuracy. Modelling in this way reveals that, under directional environmental change, both micro‐evolution and plasticity contribute to an advance of phenology, although the effect of plasticity is an order of magnitude higher than evolution. Despite this, synchrony between great tits and their caterpillar prey was reduced and population declines occurred. Our approach demonstrates that this model framework provides a promising avenue through which to explore the roles of phenotypic plasticity and evolution in trait changes and population dynamics

    Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway

    Get PDF
    Many publications make use of opportunistic data, such as citizen science observation data, to infer large-scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS-telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat-use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat-use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat-use studie

    Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway

    No full text
    Many publications make use of opportunistic data, such as citizen science observation data, to infer large-scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS-telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat-use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat-use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat-use studies. citizen science, habitat selection, opportunistic data, preferential sampling, spatial bias, ungulate

    Can hepatitis C be eradicated in the United States?

    No full text

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor
    corecore