189 research outputs found

    Incidence, Seasonality and Mortality Associated with Influenza Pneumonia in Thailand: 2005–2008

    Get PDF
    Data on the incidence, seasonality and mortality associated with influenza in subtropical low and middle income countries are limited. Prospective data from multiple years are needed to develop vaccine policy and treatment guidelines, and improve pandemic preparedness.During January 2005 through December 2008, we used an active, population-based surveillance system to prospectively identify hospitalized pneumonia cases with influenza confirmed by reverse transcriptase–polymerase chain reaction or cell culture in 20 hospitals in two provinces in Thailand. Age-specific incidence was calculated and extrapolated to estimate national annual influenza pneumonia hospital admissions and in-hospital deaths.Influenza was identified in 1,346 (10.4%) of pneumonia patients of all ages, and 10 influenza pneumonia patients died while in the hospital. 702 (52%) influenza pneumonia patients were less than 15 years of age. The average annual incidence of influenza pneumonia was greatest in children less than 5 years of age (236 per 100,000) and in those age 75 or older (375 per 100,000). During 2005, 2006 and 2008 influenza A virus detection among pneumonia cases peaked during June through October. In 2007 a sharp increase was observed during the months of January through April. Influenza B virus infections did not demonstrate a consistent seasonal pattern. Influenza pneumonia incidence was high in 2005, a year when influenza A(H3N2) subtype virus strains predominated, low in 2006 when A(H1N1) viruses were more common, moderate in 2007 when H3N2 and influenza B co-predominated, and high again in 2008 when influenza B viruses were most common. During 2005–2008, influenza pneumonia resulted in an estimated annual average 36,413 hospital admissions and 322 in-hospital pneumonia deaths in Thailand.Influenza virus infection is an important cause of hospitalized pneumonia in Thailand. Young children and the elderly are most affected and in-hospital deaths are more common than previously appreciated. Influenza occurs year-round and tends to follow a bimodal seasonal pattern with substantial variability. The disease burden varies significantly from year to year. Our findings support a recent Thailand Ministry of Public Health (MOPH) decision to extend annual influenza vaccination to older adults and suggest that children should also be targeted for routine vaccination

    A Comparison of Clinical and Epidemiological Characteristics of Fatal Human Infections with H5N1 and Human Influenza Viruses in Thailand, 2004–2006

    Get PDF
    BACKGROUND: The National Avian Influenza Surveillance (NAIS) system detected human H5N1 cases in Thailand from 2004-2006. Using NAIS data, we identified risk factors for death among H5N1 cases and described differences between H5N1 and human (seasonal) influenza cases. METHODS AND FINDINGS: NAIS identified 11,641 suspect H5N1 cases (e.g. persons with fever and respiratory symptoms or pneumonia, and exposure to sick or dead poultry). All suspect H5N1 cases were tested with polymerase chain reaction (PCR) assays for influenza A(H5N1) and human influenza viruses. NAIS detected 25 H5N1 and 2074 human influenza cases; 17 (68%) and 22 (1%) were fatal, respectively. We collected detailed information from medical records on all H5N1 cases, all fatal human influenza cases, and a sampled subset of 230 hospitalized non-fatal human influenza cases drawn from provinces with ≥1 H5N1 case or human influenza fatality. Fatal versus non-fatal H5N1 cases were more likely to present with low white blood cell (p = 0.05), lymphocyte (p<0.02), and platelet counts (p<0.01); have elevated liver enzymes (p = 0.05); and progress to circulatory (p<0.001) and respiratory failure (p<0.001). There were no differences in age, medical conditions, or antiviral treatment between fatal and non-fatal H5N1 cases. Compared to a sample of human influenza cases, all H5N1 cases had direct exposure to sick or dead birds (60% vs. 100%, p<0.05). Fatal H5N1 and fatal human influenza cases were similar clinically except that fatal H5N1 cases more commonly: had fever (p<0.001), vomiting (p<0.01), low white blood cell counts (p<0.01), received oseltamivir (71% vs. 23%, p<.001), but less often had ≥1 chronic medical conditions (p<0.001). CONCLUSIONS: In the absence of diagnostic testing during an influenza A(H5N1) epizootic, a few epidemiologic, clinical, and laboratory findings might provide clues to help target H5N1 control efforts. Severe human influenza and H5N1 cases were clinically similar, and both would benefit from early antiviral treatment

    The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: implications for infection prevention and control

    Get PDF
    In a multi-center, prospective, observational study over two influenza seasons, we sought to quantify and correlate the amount of virus recovered from the nares of infected subjects with that recovered from their immediate environment in community and hospital settings. We recorded the symptoms of adults and children with A(H1N1)pdm09 infection, took nasal swabs, and sampled touched surfaces and room air. Forty-two infected subjects were followed up. The mean duration of virus shedding was 6.2 days by PCR (Polymerase Chain Reaction) and 4.2 days by culture. Surface swabs were collected from 39 settings; 16 (41%) subject locations were contaminated with virus. Overall, 33 of the 671 (4.9%) surface swabs were PCR positive for influenza, of which two (0.3%) yielded viable virus. On illness Day 3, subjects yielding positive surface samples had significantly higher nasal viral loads (geometric mean ratio 25.7; 95% CI 1.75, 376.0, p=0.021) and a positive correlation (r=0.47, p=0.006) was observed between subject nasal viral loads and viral loads recovered from the surfaces around them. Room air was sampled in the vicinity of 12 subjects, and PCR positive samples were obtained for five (42%) samples. Influenza virus shed by infected subjects did not detectably contaminate the vast majority of surfaces sampled. We question the relative importance of the indirect contact transmission of influenza via surfaces, though our data support the existence of super-spreaders via this route. The air sampling results add to the accumulating evidence that supports the potential for droplet nuclei (aerosol) transmission of influenza

    A Reconfigurable Quantum Local Area Network Over Deployed Fiber

    Full text link
    Practical quantum networking architectures are crucial for scaling the connection of quantum resources. Yet quantum network testbeds have thus far underutilized the full capabilities of modern lightwave communications, such as flexible-grid bandwidth allocation. In this work, we implement flex-grid entanglement distribution in a deployed network for the first time, connecting nodes in three distinct campus buildings time-synchronized via the Global Positioning System (GPS). We quantify the quality of the distributed polarization entanglement via log-negativity, which offers a generic metric of link performance in entangled bits per second. After demonstrating successful entanglement distribution for two allocations of our eight dynamically reconfigurable channels, we demonstrate remote state preparation -- the first realization on deployed fiber -- showcasing one possible quantum protocol enabled by the distributed entanglement network. Our results realize an advanced paradigm for managing entanglement resources in quantum networks of ever-increasing complexity and service demands

    Dynamic Patterns of Circulating Seasonal and Pandemic A(H1N1)pdm09 Influenza Viruses From 2007–2010 in and around Delhi, India

    Get PDF
    Influenza surveillance was carried out in a subset of patients with influenza-like illness (ILI) presenting at an Employee Health Clinic (EHS) at All India Institute of Medical Sciences (AIIMS), New Delhi (urban) and pediatric out patients department of civil hospital at Ballabhgarh (peri-urban), under the Comprehensive Rural Health Services Project (CRHSP) of AIIMS, in Delhi region from January 2007 to December 2010. Of the 3264 samples tested, 541 (17%) were positive for influenza viruses, of which 221 (41%) were pandemic Influenza A(H1N1)pdm09, 168 (31%) were seasonal influenza A, and 152 (28%) were influenza B. While the Influenza viruses were detected year-round, their types/subtypes varied remarkably. While there was an equal distribution of seasonal A(H1N1) and influenza B in 2007, predominance of influenza B was observed in 2008. At the beginning of 2009, circulation of influenza A(H3N2) viruses was observed, followed later by emergence of Influenza A(H1N1)pdm09 with co-circulation of influenza B viruses. Influenza B was dominant subtype in early 2010, with second wave of Influenza A(H1N1)pdm09 in August-September, 2010. With the exception of pandemic H1N1 emergence in 2009, the peaks of influenza activity coincided primarily with monsoon season, followed by minor peak in winter at both urban and rural sites. Age group analysis of influenza positivity revealed that the percent positivity of Influenza A(H1N1)pdm09 influenza virus was highest in >5–18 years age groups (OR 2.5; CI = 1.2–5.0; p = 0.009) when compared to seasonal influenza. Phylogenetic analysis of Influenza A(H1N1)pdm09 from urban and rural sites did not reveal any major divergence from other Indian strains or viruses circulating worldwide. Continued surveillance globally will help define regional differences in influenza seasonality, as well as, to determine optimal periods to implement influenza vaccination programs among priority populations

    Survival of Influenza A(H1N1) on Materials Found in Households: Implications for Infection Control

    Get PDF
    The majority of influenza transmission occurs in homes, schools and workplaces, where many frequently touched communal items are situated. However the importance of transmission via fomites is unclear since few data exist on the survival of virus on commonly touched surfaces. We therefore measured the viability over time of two H1N1 influenza strains applied to a variety of materials commonly found in households and workplaces.Influenza A/PuertoRico/8/34 (PR8) or A/Cambridge/AHO4/2009 (pandemic H1N1) viruses were inoculated onto a wide range of surfaces used in home and work environments, then sampled at set times following incubation at stabilised temperature and humidity. Virus genome was measured by RT-PCR; plaque assay (for PR8) or fluorescent focus formation (for pandemic H1N1) was used to assess the survival of viable virus.The genome of either virus could be detected on most surfaces 24 h after application with relatively little drop in copy number, with the exception of unsealed wood surfaces. In contrast, virus viability dropped much more rapidly. Live virus was recovered from most surfaces tested four hours after application and from some non-porous materials after nine hours, but had fallen below the level of detection from all surfaces at 24 h. We conclude that influenza A transmission via fomites is possible but unlikely to occur for long periods after surface contamination (unless re-inoculation occurs). In situations involving a high probability of influenza transmission, our data suggest a hierarchy of priorities for surface decontamination in the multi-surface environments of home and hospitals

    Risk Factors of Household Transmission of Pandemic (H1N1) 2009 among Patients Treated with Antivirals: A Prospective Study at a Primary Clinic in Japan

    Get PDF
    Background: Household transmission of influenza can affect the daily lives of patients and their families and be a trigger for community transmission, thus it is necessary to take precautions to prevent household transmission. We aimed to determine the risks of household transmission of pandemic (H1N1) 2009 influenza virus from an index patient who visited a primary clinic and was treated with antiviral drugs. Methods: We followed up all the patients who were diagnosed with influenza A by rapid diagnostic test with a questionnaire or interview from July 2009 to April 2010. Secondary cases were defined as patients visiting the clinic or other clinics and being positive for influenza A by rapid diagnostic test within 7 days of onset of an index patient. Logistic regression analysis was used to explore the association between household transmission and the studied variables. Results: We recruited 591 index patients and 1629 household contacts. The crude secondary attack rate was 7.3 % [95% confidence interval (CI): 6.1–8.7]. Age of index patients (0–6 years old: odds ratio 2.56; 95 % CI: 1.31–4.01; 7–12 years old: 2.44, 1.31–3.72; 30–39 years old 3.88; 2.09–5.21; 40 years old or more 2.76; 1.17–4.53) and number of household members with five or more (3.09, 2.11–4.07), medication started 48 hours from the onset of fever (2.38, 1.17–3.87) were significantly associated with household transmission. Conclusions: Household transmission was associated with index patients aged #12 years old and adults 30 years wit

    Model Selection in Time Series Studies of Influenza-Associated Mortality

    Get PDF
    Background: Poisson regression modeling has been widely used to estimate influenza-associated disease burden, as it has the advantage of adjusting for multiple seasonal confounders. However, few studies have discussed how to judge the adequacy of confounding adjustment. This study aims to compare the performance of commonly adopted model selection criteria in terms of providing a reliable and valid estimate for the health impact of influenza. Methods: We assessed four model selection criteria: quasi Akaike information criterion (QAIC), quasi Bayesian information criterion (QBIC), partial autocorrelation functions of residuals (PACF), and generalized cross-validation (GCV), by separately applying them to select the Poisson model best fitted to the mortality datasets that were simulated under the different assumptions of seasonal confounding. The performance of these criteria was evaluated by the bias and root-mean-square error (RMSE) of estimates from the pre-determined coefficients of influenza proxy variable. These four criteria were subsequently applied to an empirical hospitalization dataset to confirm the findings of simulation study. Results: GCV consistently provided smaller biases and RMSEs for the influenza coefficient estimates than QAIC, QBIC and PACF, under the different simulation scenarios. Sensitivity analysis of different pre-determined influenza coefficients, study periods and lag weeks showed that GCV consistently outperformed the other criteria. Similar results were found in applying these selection criteria to estimate influenza-associated hospitalization. Conclusions: GCV criterion is recommended for selection of Poisson models to estimate influenza-associated mortality and morbidity burden with proper adjustment for confounding. These findings shall help standardize the Poisson modeling approach for influenza disease burden studies. © 2012 Wang et al.published_or_final_versio

    Human Rhinovirus Infections in Rural Thailand: Epidemiological Evidence for Rhinovirus as Both Pathogen and Bystander

    Get PDF
    BACKGROUND: We describe human rhinovirus (HRV) detections in SaKaeo province, Thailand. METHODS: From September 1, 2003-August 31, 2005, we tested hospitalized patients with acute lower respiratory illness and outpatient controls without fever or respiratory symptoms for HRVs with polymerase chain reaction and molecularly-typed select HRVs. We compared HRV detection among hospitalized patients and controls and estimated enrollment adjusted incidence. RESULTS: HRVs were detected in 315 (16%) of 1919 hospitalized patients and 27 (9.6%) of 280 controls. Children had the highest frequency of HRV detections (hospitalized: <1 year: 29%, 1-4 year: 29%, ≥ 65 years: 9%; controls: <1 year: 24%, 1-4 year: 14%, ≥ 65 years: 2.8%). Enrollment adjusted hospitalized HRV detection rates were highest among persons aged <1 year (1038/100,000 persons/year), 1-4 years (457), and ≥ 65 years (71). All three HRV species were identified, HRV-A was the most common species in most age groups including children aged <1 year (61%) and all adult age groups. HRV-C was the most common species in the 1-4 year (51%) and 5-19 year age groups (54%). Compared to controls, hospitalized adults (≥ 19 years) and children were more likely to have HRV detections (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5, 15.8; OR: 2.0, CI: 1.2, 3.3, respectively) and hospitalized children were more likely to have HRV-A (OR 1.7, CI: 0.8, 3.5) or HVR-C (OR 2.7, CI: 1.2, 5.9) detection. CONCLUSIONS: HRV rates were high among hospitalized children and the elderly but asymptomatic children also had substantial HRV detection. HRV (all species), and HRV-A and HRV-C detections were epidemiologically-associated with hospitalized illness. Treatment or prevention modalities effective against HRV could reduce hospitalizations due to HRV in Thailand
    • …
    corecore