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ABSTRACT 

  

 A simple test-tube methodology was used to determine optimum process parameters 

for preparing hydrous hafnium oxide microspheres by the internal gelation process.1  Broth 

formulations of hafnyl chloride [HfOCl2], hexamethylenetetramine, and urea were found 

that can be used to prepare hydrous hafnium oxide gel spheres in the temperature range of 

70–90°C.  A few gel-forming runs were made in which microspheres were prepared with 

some of these formulations in order to equate the test-tube gelation times with actual 

gelation times.  These preparations confirmed that the test-tube methodology is reliable for 

determining the ideal broths. 

vii 



 



1. INTRODUCTION 
 

 
 The internal gelation process is one of the sol-gel processes developed for the 

preparation of microspheres of hydrous metal oxides.  In this process, chilled clear broth 

droplets containing the salt of the metal, hexamethylenetetramine (HMTA), and urea are 

heated, which causes homogenous gelation and solidification of the droplets.1-15  After 

washing treatments, the gel spheres can be either air dried for use as engineered 

ion-exchange materials8−12 or, depending upon the metal, dried, calcined, and sintered 

to ceramic microspheres for use as nuclear fuel,2−7 catalysts,8−12 getters,8−11 or 

dielectrics.13–15  A previously reported test-tube methodology,1 which was employed to 

determine the optimum process parameters for preparing hydrous metal oxide 

microspheres, was also used in this study to determine the optimum process parameters 

for preparing hydrous hafnium oxide microspheres.  The testing procedures are described 

in Appendixes A and B. The key to being able to prepare hydrous hafnium oxide gel 

spheres by internal gelation depends upon finding a hafnium salt which will precipitate or 

gel at a pH <7 in a nitrate solution.  In solution, HMTA acts as a buffer that keeps the pH 

<7.  Hafnium tetrachloride (HfCl4), a Hf4+ salt, was tested and found to provide usable 

stable broths.  The pH of precipitation of hafnium salts in a chloride solution was ~2.  A 

broth is composed of the hafnium salt, HMTA, and urea chilled to 0–5°C.  A stable broth 

is one that remains clear and does not gel or precipitate for reasonable periods (≥1 h) at 

that temperature.   

 The basic chemical reactions of the internal gelation process are as follows:5 

 
(1) complexation/decomplexation 
 
 2CO(NH2)2 + Hf4+ ↔ Hf[CO(NH2)2]2

4+

 
(2) hydrolysis 
 
 Hf4+ + xH2O ↔ Hf(OH)4 •yH2O9 + 4H+ and 
 HfO2+ + xH2O ↔ HfO(OH)2 •yH2O9 + 2H+

 
(3) HMTA protonation 
 
 (CH2)6N4 + H+ ↔ (CH2)6N4•H+

1 



  
 
(4) HMTA decomposition 
 
 (CH2)6N4•H+ + 3H+ + 6H2O ↔ 4NH4

+ + 6CH2O. 
 

Urea serves as a complexing agent for the metal (reaction 1).  For broths of certain 

concentrations, the urea allows stable broths to be prepared at 0°C.  As the temperature of 

the broth droplets rises after the droplets have been injected into the hot organic medium, 

decomplexation occurs (reaction 1), allowing hydrolysis of the hafnium to take place 

(reaction 2).  HMTA, a weak organic base, drives the hydrolysis reaction to completion.  

At first the HMTA molecules are singularly protonated (reaction 3).  Once most of the 

HMTA molecules (≥95%) are protonated, they begin to decompose (reaction 4) into 

ammonia molecules, which makes the system even more basic.  Each protonated HMTA 

molecule can effectively remove three additional hydrogen ions.  The reaction products 

are formaldehyde and ammonium chloride.  In addition to its role as a complexing agent, 

urea also functions as a catalytic agent, which accelerates the decomposition of the 

protonated HMTA molecules.5
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2. PREPARATION OF STOCK SOLUTIONS USED FOR MAKING BROTHS 
 
 Generally, the rule of thumb in preparing stock solutions for use in the internal 

gelation process is to make them as concentrated as possible, without allowing them to 

become supersaturated under the test conditions.  In this study, stock solutions of HMTA, 

urea, and hafnyl chloride were prepared.  As is the case for the other elements in the IVB 

family in the periodic table (titanium and zirconium), stock solutions of hafnium cannot 

be preneutralized; rather, they have to be acidified to make clear concentrated solutions.  

The key to preparing usable hydrous hafnium oxide gel spheres that maintain their 

sphericity is to determine the ideal minimum amount of acid needed to prepare good 

broth formulations which gel in ≤10 s.  If the gel-forming time is longer than 10 s, there 

is a greater chance that the broth droplets will coalesce with other broth droplets, which 

can cause operating problems. 

  
2.1 Preparation of Acidified Hafnium Stock Solutions 
 
 Powdered HfCl4 with a molecular weight of 320.3 g/mole was used as the source 

of hafnium.  When water is added to the HfCl4, an exothermic reaction occurs that results 

in the formation of hydrous hafnium oxide gel and hydrochloric acid (HCl).  To prepare a 

stable stock solution of HfCl4, the water is acidified with HCl before being added to HfCl4 

to dilute the broth.  When a sufficient amount of HCl is added, the hydrolysis reaction is 

suppressed and gel formation is prevented.  Soluble hafnium oxo-chloro anion species 

[HfO2Cl4]4- and [HfOCl5]3- are known to form in the acidic solutions.  As will be shown 

in Sect. 3, the amount of HCl used in the broth is a critical process parameter in making 

hydrous hafnium oxide gel spheres or gels in other configurations.  In this study, three 

acidified hafnium stock solutions were prepared by the procedure described in 

Appendix C.  The concentrations of HfCl4 and HCl used were as follows: (1) 0.98 M 

HfCl4 and 1.21 M HCl, (2) 0.97 M HfCl4 and 0.96 M HCl, and (3) 1.01 M HfCl4 and 

0.75 M HCl.   

 
2.2 Preparation of Stock Solution of 3.2 M HMTA plus 3.2 M Urea 
  
 The solubility of HMTA in water at room temperature was found to be about 

3.7 M, whereas the maximum solubility of HMTA in a solution containing 3.2 M urea 
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was only about 3.2 M.  In this study, only 3.2 M HMTA plus 3.2 M urea solutions were 

used, which had a density of 1.14 g/mL.  It was also discovered that a good technical 

grade of crystalline HMTA must be used.  Free-flowing HMTA powder that is easy to 

pour contains additives that have a detrimental effect on the broth chemistry.4  A 2-L 

stock solution was prepared by adding 383.38 g urea (NH2CONH2) and 892.22 g HMTA 

(C6H12N4) to a clean 3-L beaker and dissolving them with chilled (5 ± 5°C) deionized 

water.  The volume was brought up to about 2 L by slowly adding the deionized water 

and mixing.  Once the solids were completely dissolved, the liquid was transferred to a 

2-L volumetric flask and brought to volume.  The solution was then mixed well, and a 

sample was taken for analysis to determine the exact concentrations of the HMTA and 

urea.  For this study, it was 3.2 M HMTA and 3.2 M urea. 

 

3. EXPERIMENTAL RESULTS 
 

 Optimum broth formulations and gel-forming temperatures were determined for 

making structurally strong hydrous hafnium oxide microspheres by the internal gelation 

process.  The stock solutions described in Sect. 2 were used to prepare the broths given in 

Table 1 for the test-tube gelation experiments.  The broths used to prepare hydrous 

hafnium oxide microspheres in laboratory-scale apparatus are also indicated in Table 1.  

Broth stability tests were conducted on each of these broths as described in Appendix A.  

As noted earlier, a stable broth is one that remains clear and does not gel or precipitate for 

≥1 h at 0°C.  All broths in Table 1 were stable broths.   

 Figure 1 shows gelation time as a function of HMTA/HCl mole ratio for hafnium 

broths heated at 90°C in which the HCl concentration in the broth was varied from 0.38 

to 0.68 M.  The HMTA/Hf4+ mole ratio is also given at each data point.   The goal of 

these experiments was to determine usable broth formulations with gelation times of 

≤10 s, which in Fig. 1 are the ones located under the dashed line.  All usable broth 

formulations in Fig. 1 had HMTA/Hf4+ mole ratios ≥1.85.  Table 2 gives the 

characteristic of all usable broths found which gelled in ≤10 s at the gel-forming 

temperature of 90°C.  Concentrations of the broth varied from 0.50–0.66 M for Hf4+ and 

0.40–0.81 M for HCl.  One broth had a HMTA/HCl mole ratio of 1.25.  The pH of the 

aged gels formed from these usable broths ranged from 3.1 to 5.2.  The rigidity 
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Table 1.  Concentrations of HMTA, urea, Hf4+, and H+ used in experimental broths 

 
HMTA/H+

mole/ratio 
HMTA/Hf4+

mole/ratio 
HMTA 

(M) 
Urea 
(M) 

  Hf4+

(M) 
 H+

(M) 
pHa

1.00 1.24 0.68 0.68 0.55 0.68  
1.00 1.24 0.87 0.87 0.70 0.88  
1.25 1.55 0.85 0.85 0.55 0.68 0.9 
1.25 1.54 1.02 1.02 0.66 0.81  
1.50 1.48 0.89 0.89 0.60 0.59  
1.50 1.85 1.11 1.11 0.55 0.68 1.2 
1.50 1.84 1.14 1.14 0.62 0.76  

 1.58b 1.98 1.18 1.18 0.61 0.75  
1.75 2.16 1.19 1.19 0.55 0.68 1.6 
1.75 2.17 1.26 1.26 0.58 0.72  
2.00 2.47 1.36 1.36 0.55 0.68 1.9 
2.00 1.98 1.20 1.20 0.60 0.59  

 2.07b 2.07 1.23 1.23 0.60 0.60  
2.50 2.47 1.48 1.48 0.60 0.59  
2.50 1.85 1.13 1.13 0.61 0.45 0.5 
2.49 1.86 1.17 1.17 0.63 0.47 0.6 
3.02 2.16 1.33 1.33 0.61 0.45  
2.75 2.30 1.24 1.24 0.61 0.45 0.7 
2.75 2.74 1.37 1.37 0.50 0.50  
2.23 2.23 1.12 1.12 0.50 0.50 1.0 
2.25 2.23 1.27 1.27 0.57 0.57  
2.50 2.49 1.24 1.24 0.50 0.50  
2.50 2.45 1.35 1.35 0.55 0.54  
2.47 2.47 1.22 1.22 0.50 0.50 1.2 
2.72 2.72 1.36 1.36 0.50 0.50 1.7 
2.75 2.74 1.37 1.37 0.50 0.50  
2.75 2.75 1.43 1.43 0.52 0.50  
2.96 2.96 1.48 1.48 0.50 0.50 2.1 

 2.92b 2.10 1.30 1.30 0.62 0.45  
3.02 2.23 1.36 1.36 0.61 0.45  
3.22 2.33 1.35 1.35 0.58 0.42  

 3.21b 2.30 1.37 1.37 0.60 0.43  
3.46 2.58 1.43 1.43 0.55 0.41  
3.77 2.26 1.35 1.35 0.60 0.36  
3.83 2.86 1.51 1.51 0.53 0.40  
4.16 2.50 1.43 1.43 0.57 0.34  
4.85 2.92 1.59 1.59 0.55 0.33  

   apH of chilled, clear gel-free broth.  
   bBroth used in a laboratory-scale production run to determine actual gelation 
  time and to prepare hydrous hafnium oxide microspheres. 
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Fig. 1.  Gelation time as a function of HMTA/HCl mole ratio for 

hafnium broths with HCl concentrations of 0.38–0.68 M  
at a gel-forming temperature of 90°C. 

 
of the aged gels ranged from soft to very hard.  For reason of economics, the most ideal 

broths are those that have the lowest concentrations of HCl and HMTA.  The broth 

highlighted in Table 2 would be a very good choice. 

 The impact of lowering the gel-forming temperature on gelation time is shown in 

Figs. 2 and 3.  The concentrations of Hf4+ and HCl in the broths tested in Fig. 2 were 

maintained 0.45 and 0.61 M, respectively, while the concentration of the HMTA was 

varied.  Each of the broths was tested at 60, 70, 80, and 90°C.  No usable broths were 

found at the gel-forming temperature of 60°C.  At a gel-forming temperature of 90°C, it 

appears that a HMTA/HCl mole ratio of ≥2.6 was needed to have a gelation time of 

≤10 s.  At 80 and 70°C, estimated HMTA/HCl mole ratios of about 3 and 3.2, 

respectively, might be needed.  In Fig. 3, broths with Hf4+ and HCl concentrations of 

0.50 M were also tested at 60, 70, 80, and 90°C.  At 90 and 80°C, HMTA/HCl mole 

ratios of ≥2.25 and ≥2.50 would be needed to have a gelation times of ≤10 s.  As the 

HMTA/HCl mole ratios increased, the rigidities decreased.  At a HMTA/HCl mole ratio 
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of 3, the gels are fairly soft and could be damaged during handling.  Ones with rigidities 

of medium hardness would probably be more ideal (Appendix B).  From the slope of the 

plot for the 70°C data in Fig. 3, a HMTA/HCl mole ratio of 3 would be needed to obtain 

a gelation time of 10 s; however, based upon the rigidity trend, this gel would be 

expected to be very soft.  The data in Figs. 2 and 3 indicated that a gel-forming  

 

Table 2.  Characteristics of usable broths with gelation times of  ≤10 s at 90°C 
 
HMTA/H+

mole ratio 
HMTA/Hf4+

mole ratio 
HMTAa 

(M) 
 Hf4+

(M) 
 H+

(M) 
G. T.b 

(s) 
Rigidity pH of 

aged gel 
1.25 1.55 1.02 0.66 0.81 10 9  
1.50 1.85 1.11 0.55 0.68 10 4 4.0 
1.50 1.84 1.14 0.62 0.76 9 7 3.5 

 1.58c 1.98 1.18 0.61 0.75 10   
1.75 2.16 1.19 0.55 0.68 8 4 4.2 
1.75 2.17 1.26 0.58 0.72 7 3 4.5 
2.00 2.47 1.36 0.55 0.68 6 2 5.2 
2.00 1.98 1.20 0.60 0.59 10 8 5.1 

 2.07c 2.07 1.23 0.60 0.60 9 8 5.2 
2.50 1.85 1.12 0.61 0.45 10−11 8  
2.50 2.47 1.48 0.60 0.59 6 8  
2.75 2.03 1.24 0.61 0.45 8 8 4.2 
2.75 2.74 1.37 0.50 0.50 7 4  
2.23 2.23 1.12 0.50 0.50 10 7 3.1 
2.25 2.23 1.27 0.57 0.57 8 8  
2.50 2.49 1.24 0.50 0.50 8 6  
2.50 2.45 1.35 0.55 0.54 7 5 3.6 
2.47 2.47 1.22 0.50 0.50 8 6 4.0 
2.72 2.72 1.36 0.50 0.50 6 3 4.8 
2.75 2.74 1.37 0.50 0.50 6 3  
2.75 2.75 1.43 0.52 0.50 5 3  
2.96 2.96 1.48 0.50 0.50 5 3 5.1 

 2.92c 2.10 1.30 0.62 0.45 10   
3.02 2.23 1.36 0.61 0.45 7 8  

 3.21c 2.30 1.37 0.60 0.43 10−11 8  
3.46 2.58 1.43 0.55 0.41 9   
3.63 2.74 1.45 0.53 0.40 10   
3.83 2.86 1.51 0.53 0.40 9   

aUrea concentration is the same as the HMTA concentration. 
bG. T. = Gelation Time (time needed for gelation to begin). 

cBroth used in a laboratory-scale production run to determine actual gelation time and to prepare 
 hydrous hafnium oxide microspheres. 
 

7 



0

5

10

15

20

25

30

35

40

45

2 2.5 3
HMTA/HCL mole ratio

G
el

at
io

n 
Ti

m
e 

(s
)

3.5

90
80
70

Gelation Temperature (oC)

     Broth
Hf4+ = 0.45 M
HCl = 0.61 M

8

8
8

7

7
8

Rigidity value
given at each 
data point

HMTA/Hf4+ mole ratio 2.031.851.66

8

 
Fig. 2.  Gelation time as a function of HMTA/HCl mole ratio for broths heated 

at 70, 80, and 90°C.  The concentrations of Hf4+ and HCl in the 
broth were 0.45 and 0.61 M, respectively. 
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Fig. 3.  Gelation time as a function of HMTA/HCl mole ratio for broths with Hf4+  

and HCl concentrations of 0.5 M which were heated at 70, 80, and 90°C. 
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temperature of 80 or 90°C is needed to prepare good-quality hydrous hafnium oxide gel 

spheres.   

 In Fig. 4, the concentration of HCl in broth is plotted as a function of HMTA/HCl 

mole ratio for broth formulations which gelled in about 10 s at 90°C.  This data, in 

conjunction with the data in Fig. 1−3 and Tables 1 and 2, makes it possible to easily 

choose a broth formulation for gel-forming temperature to make quality microspheres.  

Once chosen, hydrous hafnium oxide gel spheres can be prepared on any scale to make 

microspherical sorbents or to make composite sorbents by the methods described in 

Refs. 8–11.  The hydrous hafnium oxide gel spheres can also be converted to acid-

insoluble hafnium monohydrogen phosphate while maintaining the sphericity 

(Appendix F).  Hafnium monohydrogen phosphate is also a good sorbent for a number of 

cations.  Gel spheres can be similarly prepared in which fine catalytic powder is  
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Fig. 4.  Concentration of HCl in broth as a function of HMTA/HCl mole ratio 

for broth formulations which gelled in about 10 s at 90°C. 
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added and suspended in the broth droplets, which when heated form gel spheres with 

these particles homogenously set within the matrix.  Treatment techniques have also been 

developed that can be used to further enhance the porosity of the microspheres, making 

them more effective as engineered catalytic forms for use in liquid or gas streams. 

 
 

4.  THREE EXAMPLES OF LAB-SCALE OF HYDROUS HAFNIUM OXIDE 
MICROSPHERES PREPARATION 

 
4.1 Example 1 

 In this preparation, 129.0 mL of broth was prepared by slowly mixing 49.0 mL of 

chilled 3.11 M HMTA plus 3.11 M urea solution (0 to 5°C) with 80.0 mL of chilled 

0.98 M HfCl4 stock solution with HMTA/Hf4+ and HMTA/HCl mole ratios of 1.95 and 

1.58, respectively.  The concentrations of Hf4+, HCl, HMTA, and urea for the broth were 

0.61, 0.75, 1.18, and 1.18 M, respectively.  A two-fluid nozzle system using a 21 gauge 

flat-tipped needle was used to provide the broth droplets.10  From the tip of the needle, 

the broth droplets were introduced into a flowing stream of heated immiscible organic 

medium (~90°C).  Silicone oil (Dow Corning 200 silicone fluid) was used in this 

preparation.  The droplets were then transported into the gel-forming apparatus.  The size 

of the droplets was controlled using a two-fluid nozzle concept and varying the gauge of 

the needle and the flow rates of the hot silicone oil and the chilled broth.  The droplets 

began to gel in 10−11 s and were subsequently collected in a stainless steel mesh basket 

downstream.  It took ~30 s for the gelled microspheres to reach the basket.  Next, the 

microspheres were aged for 20 min in silicone oil at ~90°C to complete the gelation 

process, washed four times with trichloroethylene (TCE) to remove the silicone oil, and 

then washed six times with 0.5 M NH4OH to remove the reaction impurities.  The washed 

microspheres were then air dried and weighed.  About 27.3 g of air-dried microspheres 

with a tap density of 1.6 g/mL were obtained. 

 

4.2 Example 2 

 A 364.7-mL broth was prepared by slowly mixing 179.03 g (156.49 mL) of 

chilled 3.2 M HMTA plus 3.2 M urea solution (0 to 5°C) with 271.15 g (208.18 mL) of 

chilled 1.05 M HfCl4 stock solution which had HMTA/Hf4+ and HMTA/HCl mole ratios 
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of 2.30 and 3.21, respectively.  The density of the HfCl4 stock solution was 1.302 g/mL.  

The concentrations of Hf4+, HCl, HMTA, and urea for the broth were 0.60, 0.43, 1.37, 

and 1.37 M, respectively.  A two-fluid nozzle system using a 18 gauge flat-tipped needle 

was used to provide the broth droplets.7  The droplets began to gel in 10−11 s in the 

forming column in silicone oil at 90°C and were subsequently collected downstream in a 

stainless steel mesh basket.  The run lasted about 54 min.  The microspheres were then 

aged for 20 min in silicone oil at ~90°C to complete the gelation process, washed four 

times with TCE to remove the silicone oil, and subsequently washed six more times with 

0.5 M NH4OH to remove the reaction impurities.  The estimated gel-sphere volume was 

about 300 mL.  Next, the gel spheres were air dried and weighed.  The air-dried 

microspheres weighed 63.86 g and had a tap density of 1.65 g/mL and an average crush 

strength of >1200 g.  The procedures for these two measurements are described in Ref. 7.  

Subsequently, an 11.3653-g sample of the air-dried microspheres was put in an alumina 

boat, placed in a tube furnace, and heated according to the schedule given in Appendix D.  

The sintered mass of the microspheres was 5.5931 g, so the weight loss was 50.8%.  The 

average crush strength of the sintered microspheres was only 128 g, and the tap density 

was 4.74 g/mL.  Figure 5 shows a 4× microscopic image of a small sample of the 

hafnium oxide microspheres prepared in this experiment.  The microspheres were 

measured to be in the 500- to 600-µm-diam range.  The low crush strength of the 

microspheres appears to be attributed to the fact that many of the microspheres had fine 

cracks in them.  All usable broth formulations produce amorphous hydrous hafnium 

oxide gel spheres, which are very difficult to wash the organic reaction impurities from.  

The reaction impurities decompose at high temperatures and cause gassing and pressure 

buildup in the microspheres, which probably cause the microspheres to crack.  To 

understand this phenomenon better, a study using thermogravimetric analysis (TGA) and 

differential thermal analysis (DTA) was conducted.  The results are shown in Fig. 6.  In 

this analysis, a 0.324-g sample of the air-dried microspheres was heated at a rate of 

60°C/h in 100% oxygen, as shown in Fig. 7.  In Fig. 6, the DTA profile shows an 

exothermic reaction beginning at ~200°C at the same time the TGA shows a sharp loss of 

mass.  Separate TGA analyses were conducted with small samples of HMTA, urea, and 

NH4NO3 which were also heated in 100% O2 at a rate of 60°C/h.  Figure 8 gives the 
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percentage weight loss of each compound as a function of temperature.  The hydrous 

hafnium oxide microspheres should contain trace amounts of each of these compounds; 

however, the TGA and DTA profiles in Fig. 6 appear to only match the behavior for the 

decomposition of NH4NO3 seen in Fig. 8.  The TGA/DTA data provided the information 

needed to understand the decomposition behavior of impurities, which was needed to 

develop the calcining and sintering heating schedule given in Appendix D that was used 

in this study. 

 

 

 
Fig. 5.  A 4× microscopic image of a sample of hafnium oxide microspheres 

which were air dried at ambient temperature and then calcined at 600°C for 4 h. 
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Fig. 6. TGA and DTA analytical profiles of hydrous hafnium oxide 
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Fig. 7.  Temperture-vs-time profile for the TGA/DTA analysis of hydrous hafnium 

oxide microspheres given in Fig. 6. 
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Fig. 8.  Separate TGA analyses of HMTA, urea, and NH4NO3 for small samples of 

these compounds which were heated in 100% O2 at a rate of 60°C/h. 
 

 
4.3 Example 3 
  
 To be able to prepare strong, structurally stable calcined and sintered hafnium 

oxide microspheres, enough yttrium needs to be added to the broth so the sintered 

hafnium oxide microspheres will contain 5−10 mole % yttrium in the form of Y2O3 

(Ce2O3 could also be used).  In this example, a broth was prepared that was designed to 

yield sintered hafnium oxide microspheres with 8 mole % yttrium or 4.4 wt. % in Y2O3.  

To prepare the 445.16 mL broth, 222.7 g (194.7 mL) of chilled 3.2 M HMTA plus a 

3.2 M urea solution which was cooled to 0–5°C were slowly added with mixing to 

250.46 mL of a hafnium plus yttrium chloride solution which was also chilled.  The 

hafnium plus yttrium chloride solution was prepared by dissolving 2 g of fine yttrium 

metal powder in 324.27 g (248.96 mL) of 1.047 M HfCl4 stock solution which was 

0.75 M in HCl.  The density of the hafnium chloride stock solution without yttrium was 

1.302 g/mL.  The HMTA/(Hf4+ + Y3+) and HMTA/HCl mole ratios of the broth were 

2.20 and 3.34, respectively.  The concentrations of Hf4+, Y3+, HCl, HMTA, and urea for 
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the broth were 0.586, 0.51, 0.42, 1.4, and 1.4 M, respectively.  A two-fluid nozzle system 

using an 18 gauge flat-tipped needle was used to provide the broth droplets.  The droplets 

began to gel in 10−11 s in the forming column in silicone oil at 91°C and were 

subsequently collected downstream in a stainless steel mesh basket.  The run lasted about 

55 min.  Next, the microspheres were aged for 20 min in silicone oil at ~90°C to 

complete the gelation process, then washed four times with TCE, washed six more times 

with 0.5 M NH4OH , and then four more times with deionized water.  The bead volume 

after the washing steps was about 330 mL.  These gel spheres from this run were given to 

F. C. Montgomery of the Materials Science and Technology Division, who developed a 

washing procedure using Dowanol PM glycol ether that yielded sintered-yttrium-

stabilized hafnium oxide microspheres (see Appendix E) with a high crush strength.  A 

microscopic image of a sample of these microspheres is shown in Fig. 9.  Note that a few 

of the larger ones were not completely spherical.  To produce very high-density 

microspheres, they should be sintered under air at 1500°C.  They could be used as 

abrasion-resistant microspheres for grinding other materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Microscopic image of sintered HfO2-Y2O3 microspheres. 
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APPENDIX A 
 

BROTH STABILITY TESTS 
  
 A stable broth is one that remains clear and does not gel or precipitate for 

reasonable periods of time (usually about 1 h) at ~0°C.  Broths were prepared using 

hafnium stock solutions #1, #2 and #3, as described in Appendix C, and each was tested 

for broth stability.  Calculated amounts of chilled HMTA/urea, stock solution, and water 

were mixed together as follows: 

1. A rack for holding thin-walled glass centrifuge tubes was placed in the ice bath. 

Predetermined volumes of 3.2 M HMTA/3.2 M urea and acidified stock solutions of 

hafnium chloride were separately and carefully pipetted to these tubes with 

calibrated electronic pipettes, and the tubes were subsequently chilled for ~20 min.  

The centrifuge tubes containing the acidified hafnium stock solutions also served as 

the broth tubes and were labeled accordingly as to stock solution that was used and 

the HMTA/H+ mole ratio.   

2. hen needed, calculated amounts of deionized water were added with a calibrated 

lectronic pipette to the centrifuge tubes containing the acidified hafnium stock 

olutions to obtain the targeted concentrations for the broth. 
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3. o prepare a broth, a volume of chilled HMTA/urea was carefully removed with a 

ipette and transferred to a centrifuge tube containing the acidified hafnium stock 

olutions.  Because of the small volumes involved, it was important that the transfer 

as complete.  The broth was then mixed well with a Teflon stirring rod, and the 

roth temperature was maintained at 0°C.  The time of mixing was recorded, and the 

roth was observed until the first sign of gelation or for 1 h.  The time of gelation w

ecorded.  Tests were done in duplicate.  If gelation had not occurred after about 

 min of mixing, the pH of the broth for one of the samples was measured with a 

alibrated-temperature-compensated Ross electrode (Appendix B). 
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APPENDIX B 
 

GELATION TESTS IN GLASS CENTRIFUGE TUBES 
 
 
Apparatus  
 
 The apparatus used for the gel tests was simple and consisted of the following 

components: 

• 2-L beaker containing ice water 

• 4-L beaker containing heated water 

• hot plate with stirring capability 

• dial thermometer 

• calibrated Metler DE 200 analytical balance (0- to 200-g range with a readability of 

0.0001 g) 

• calibrated, continuously adjustable digital pipette (100- to 1000-µL range) or a 

calibrated Rainin EDP-Plus electronic pipette with interchangeable liquid ends that 

cover the 100- to 1000-µL and 250- to 2500-µL ranges, plus the concomitant 

disposable tips 

• ROSS™ Sure-Flow combination pH electrode, which provides temperature 

compensation for temperatures in the range of 0–100oC 

• in-date standard pH 7 and pH 4 buffer solutions 

• 12-mL glass centrifuge tubes 

• 8-in.-long Teflon-coated microspatulas 

 
Testing Procedure 
 
 The gel test procedure was as follows. 
 
 1.  A portion of the hafnium solution (at room temperature) and deionized water 

were carefully pipetted into the bottom of a glass centrifuge tube in an ice-bath.  The 

required volume of HMTA/urea was pipetted into the bottom of a separate plastic 

centrifuge tube in an ice bath.  Both were chilled for 10 min to attain ice-bath 

temperature.  The chilled HMTA/urea was then quantitatively pipetted into the chilled 
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hafnium solution and well mixed.  Care was taken not to splash the broth onto the test 

tube walls.  The broth was maintained in the ice bath for an additional 5 min. 

 2.  The broth tube was then placed in a hot water bath at the desired temperature.  

The test tube was gently swirled in the water bath to observe when the gel set.  A 

stopwatch was used to measure the time in the bath needed for gelation to occur.  When 

gelation began, the clear broth became viscous and motionless.  The gel was then allowed 

to age for 10 min in the hot bath at the same temperature. 

 3.  The test tube was then removed from the hot bath, and the gel was allowed to 

cool to room temperature.  The transparency of the gel [on a scale of 1 (transparent) to 

10 (opaque)] was subjectively determined and recorded.  The rigidity of the gel was 

subjectively determined by inserting a spatula into the center of the gel and was 

quantified on a subjective scale of 1 (no resistance, almost like water) to 10 (high 

resistance, difficult to penetrate). 

 4.  The gel was then broken up by stirring with the spatula.  Next, the test tube 

was centrifuged to remove pockets of air and to compact the gel into the bottom of the 

tube.  A calibrated pH probe was inserted into the gel to measure the pH.  It took up to 

30 s for the pH reading to stabilize. 

At a minimum, duplicates of each broth were tested to ensure accuracy.  If the gel 

times and properties matched, the test results were assumed to be acceptable. If the gel 

times did not match, additional tests were conducted to resolve the problem and obtain 

consistent values. 
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APPENDIX C 
 

PREPARATION OF HAFNIUM TETRACHLORIDE STOCK SOLUTIONS 
   
 
PROCEDURE
 
• Hafnium tetrachloride (lot #13236-1) and 5.626 M HCl (label #SS-BC-01) were used 

in preparing the stock solutions.  HfCl4 is a powder, and its molecular weight is 
320.3 g/mol. 

• Amounts of HfCl4 and HCl needed were calculated for a particular stock preparation. 
• HCl was transferred to beaker and then placed in ice bath on a stir plate with large stir 

bar. 
• Chilled deionized water was added to HCl to achieve about three-fourths of total feed 

volume needed.  For a 100-mL feed, −75 mL of water-acid solution was made.*
• HfCl4 was carefully weighed out into a small beaker taking special precautions (best 

if done in hood). 
• HfCl4 was added very slowly to the acid solution prepared above, and the solution 

was stirred manually several times during addition of powder. 
• The wall of beaker containing the feed was rinsed with the solution using a small 

pipette. 
• The same pipette was used to rinse out the hafnium beaker with water into the feed. 
• The volume of the mixture was then brought up to a predetermined mark on the 

beaker. 
• A stir bar was added, and solution was stirred overnight. 
• If the volume dropped much below the mark, deionized water was added to bring the 

volume back up to the mark.  At the mark, the hafnium concentration was near the 
predetermined molarity. 

• When the HfCl4 was totally into solution, the solution was carefully transferred into a 
tared volumetric flask with a funnel, being careful not to splash the sides of the 
funnel. 

• Rinses from the funnel and beaker were added to flask, and volume was brought up to 
the meniscus. 

• The flask was then weighed to determine the density of the solution. 
 
*Note: Mixing these chemicals is very exothermic.  Lowering the temperature minimizes 
the amount of volatile HCl vapor released to the hood. 
 
 
DATA AND CALCULATIONS
 
 Stock Solution #1  [HfCl4] = 1 M  [HCl] = 1.25 M 
 Stock Solution #2  [HfCl4] = 1 M  [HCl] = 1.00 M 
 Stock Solution #3  [HfCl4] = 1 M  [HCl] = 0.75 M 
 
 
Amounts HfCl4 and HCl used to prepare 100 mL of stock solutions: 
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 HfCl4 
 [(1.0 mol/L)(0.1 L)]/(320.3 g/mol) = 32.03 g HfCl4  
 HCl (using a 5.625 M HCl stock solution) 
 for 1.25 M HCl stock solution, 
 [(1.25 mmol/mL)(100 mL]/(5.625 mmol/mL) = 22.2 mL was needed 
 for 1.00 M HCl stock solution, 17.8 mL HCl was needed 
 for 0.75 M HCl stock solution, 13.3 mL HCl was needed 
 
Amounts used: 
    HfCl4   HCl  Total vol.
Stock Solution #1  32.42 g  22.2 mL 103.55 mL 
Stock Solution #2  32.43 g  17.8 mL 104.53 mL 
Stock Solution #3  32.50 g  13.3 mL 100.45 mL 
 
Concentrations of HfCl4 and HCl used in stock solutions: 
 
    [HfCl4]  [HCl] 
Stock solution #1  0.977 M  1.206 M 
Stock solution #2  0.969 M  0.958 M 
Stock solution #3  1.010 M  0.745 M 
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APPENDIX D 

HEATING SCHEDULE USED TO HEAT, CALCINE, AND SINTER  
HYDROUS HAFNIUM OXIDE GEL SPHERES 

 
PROCEDURE
 
• Air-dried hydrous hafnium oxide gel spheres in stainless steel pans and at ambient 
 temperature for ~48 h.  The maximum number of layers of gel spheres was 3. 
 
• Sieved the air-dried microspheres using 8-in.-diam stainless steel sieves. 
 
• Placed desired fraction of microspheres in an alumina or platinum boat and heated at 
 80°C in a flowing steam and O2 (30 mL/min) atmosphere for 2 h.*
 
• Heated at 190°C in a flowing steam and O2 (30 mL/min) atmosphere for 3 h.*
 
• Heated at 400°C in flowing O2 (30 mL/min) atmosphere for 2 h.*
 
• Heated at 1046°C in flowing O2 (30 mL/min) atmosphere for 4 h.**

 
• Turn furnace off and let cool to ambient temperature. 
 
• Remove boat from furnace, weigh, and sieve microsphere to determine size range. 
 
• Measure the slow-pour density and crush strength.†
 
 *The heat-up ramp was 60°C/h. 
 **The heat-up ramp was 180°C/h. 
 †The methodologies are described in detail in Ref. 7. 
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APPENDIX E 

WASHING AND SINTERING PROCEDURE DEVELOPED TO PRODUCE 
HYDROUS HAFNIUM OXIDE MICROSPHERES 

WITH HIGH CRUSH STRENGTH 
 
PROCEDURE  (Developed by F. C. Montgomery of the Materials Science and 
Technology Division) 
 
• Wash gel spheres with deionized water until the pH of the wash solution is <5. 
• Washed gel spheres with five separate portions of Dowanol PM glycol ether* for 
 ~30 min/wash.  Make sure enough volume is used to cover all the gel spheres. 
• To sinter, follow the procedure in Appendix D; however, sinter the microspheres at  
 1350°C for 5 h rather than at 1050°C for 4 h. 
• The sintered HfO2-Y2O3 did not develop cracks and had a crush strength >1200 g.  
 The gel spheres prepared in Example 3 were used in this work (see page 14). 
 
*Dowanol PM glycol ether  
1-methoxy-2-propanol (99.5%) 
CH3OCH2CH(OH)CH3 

 
Mol. wt. = 90.12 g/mol 
Density = 0.962 g/mL 
Boiling point = 118°C 
 
Made by ENTAONE-OMI, Inc. 
P.O. Box 1900 
New Haven, CT 06508 
 
The following figure is a differential scanning calorimetry (DSC)/DTA analytical plot for 
a 29.8890-mg sample of the HHfO-HYO gel spheres from Example 3 washed with 
Dowanol PM glycol ether which was provided by F. C. Montgomery.  The gel spheres 
were dried at 60°C and then heated in the DSC/DTA furnace at a rate of 60°C/h to 
1350°C.   
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APPENDIX F 
 

PROCEDURE FOR CONVERTING HYDROUS HAFNIUM OXIDE GEL 
SPHERES TO HAFNIUM MONOHYDROGEN 

PHOSPHATE SPHERES 
 

PROCEDURE  (Developed with the help of a former University of Tennessee at 
Chattanooga co-op student, S. G. Simmerman) 
 
• Put washed hydrous hafnium oxide gel spheres in a glass fleaker and cover and soak 

for about 10 min in 0.5 M H3PO4.  This step converts the surface to hafnium 
monohydrogen phosphate and prevents dissolution of the spheres.  The 
monohydrogen phosphate is insoluble in strong acid. 

 
• Pour off solution and then cover spheres again with fresh 0.5 M H3PO4 and let them 

soak for ~24 h at ambient temperature.  This step adds depth to the monohydrogen 
phosphate layer. 

 
• Pour off the liquid and cover the spheres with 6.0 M H3PO4. 
 
• Place fleaker in stainless steel pressure vessel and add deionized water to the vessel 

but outside the fleaker.  
 
• Seal the vessel and place in an oven and heat to 125°C and hold at that temperature 

for 3 h.  The vessel employed in this work had a stainless steel thermowell, and all 
temperatures were based on a thermocouple in the thermowell. 

 
• Remove vessel and place in an ice bath to quickly cool vessel. 
 
• Once the temperature drops to 25°C, carefully open vessel and remove fleaker. 
 
• Pour off liquid and then wash the spheres with deionized water until the pH is >3. 
 
• The spheres should be white crystalline and can be air dried for use as sorbents. 
 
Note.  In separate conversions using the same procedure, it was found that hafnium 
monohydrogen phosphate spheres prepared with 5 M H3PO4 were amorphous or glassy in 
appearance.  Ones converted with 5.25 M H3PO4, 5.50 M H3PO4, and 5.75 M H3PO4 were 
about 90, 95, and 99% converted to the white crystalline form, respectively, the 
remainder being glassy.  None of the spheres, including the 6.0 M H3PO4 treated spheres, 
degraded when soaked in 8 M HNO3 for 24 h.  It was also found that a H3PO4 
concentration of 6.25 M or greater could not be used because the spheres became too 
crystalline and were not strong enough to use in ion exchange columns. 
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