411 research outputs found
Cosmological constraints from applying SHAM to rescaled cosmological simulations
We place constraints on the matter density of the Universe and the amplitude of clustering using measurements of the galaxy two-point correlation function from the Sloan Digital Sky Survey (SDSS). We generate model predictions for different cosmologies by populating rescaled N-body simulations with galaxies using the subhalo abundance matching (SHAM) technique. We find ΩM = 0.29 ± 0.03 and σ8 = 0.86 ± 0.04 at 68 per cent confidence by fitting the observed two-point galaxy correlation function of galaxies brighter than Mr = -18 in a volume-limited sample of galaxies obtained by the SDSS. We discuss and quantify potential sources of systematic error and conclude that while there is scope for improving its robustness, the technique presented in this paper provides a powerful low-redshift constraint on the cosmological parameters that is complementary to other commonly used methods
Recommended from our members
The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 109 M⊙. Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z= 1, 27 per cent of central galaxies (above 3 × 1010 M⊙) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain ‘central’ objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering
Lepton asymmetry and the cosmic QCD transition
We study the influence of lepton asymmetry on the evolution of the early
Universe. The lepton asymmetry is poorly constrained by observations and
might be orders of magnitude larger than the baryon asymmetry , . We find that lepton asymmetries that are large compared to the
tiny baryon asymmetry, can influence the dynamics of the QCD phase transition
significantly. The cosmic trajectory in the phase diagram of strongly
interacting matter becomes a function of lepton (flavour) asymmetry. Large
lepton asymmetry could lead to a cosmic QCD phase transition of first order.Comment: 23 pages, 14 figures; matches published version, including Erratum.
Conclusions, pictures, numerics remained unchange
A Dynamic Renormalization Group Study of Active Nematics
We carry out a systematic construction of the coarse-grained dynamical
equation of motion for the orientational order parameter for a two-dimensional
active nematic, that is a nonequilibrium steady state with uniaxial, apolar
orientational order. Using the dynamical renormalization group, we show that
the leading nonlinearities in this equation are marginally \textit{irrelevant}.
We discover a special limit of parameters in which the equation of motion for
the angle field of bears a close relation to the 2d stochastic Burgers
equation. We find nevertheless that, unlike for the Burgers problem, the
nonlinearity is marginally irrelevant even in this special limit, as a result
of of a hidden fluctuation-dissipation relation. 2d active nematics therefore
have quasi-long-range order, just like their equilibrium counterpartsComment: 31 pages 6 figure
Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis
The cosmic energy density in the form of radiation before and during Big Bang
Nucleosynthesis (BBN) is typically parameterized in terms of the effective
number of neutrinos N_eff. This quantity, in case of no extra degrees of
freedom, depends upon the chemical potential and the temperature characterizing
the three active neutrino distributions, as well as by their possible
non-thermal features. In the present analysis we determine the upper bounds
that BBN places on N_eff from primordial neutrino--antineutrino asymmetries,
with a careful treatment of the dynamics of neutrino oscillations. We consider
quite a wide range for the total lepton number in the neutrino sector, eta_nu=
eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry
eta_{nu_e}^in, solving the corresponding kinetic equations which rule the
dynamics of neutrino (antineutrino) distributions in phase space due to
collisions, pair processes and flavor oscillations. New bounds on both the
total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at
the onset of BBN are obtained fully exploiting the time evolution of neutrino
distributions, as well as the most recent determinations of primordial 2H/H
density ratio and 4He mass fraction. Note that taking the baryon fraction as
measured by WMAP, the 2H/H abundance plays a relevant role in constraining the
allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the
maximum contribution of neutrinos with primordial asymmetries to N_eff as a
function of the mixing parameter theta_13, and point out the upper bound N_eff
< 3.4. Comparing these results with the forthcoming measurement of N_eff by the
Planck satellite will likely provide insight on the nature of the radiation
content of the universe.Comment: 17 pages, 9 figures, version to be published in JCA
Rheology of Active-Particle Suspensions
We study the interplay of activity, order and flow through a set of
coarse-grained equations governing the hydrodynamic velocity, concentration and
stress fields in a suspension of active, energy-dissipating particles. We make
several predictions for the rheology of such systems, which can be tested on
bacterial suspensions, cell extracts with motors and filaments, or artificial
machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis and
active mechanosensing find natural explanations within our model.Comment: 3 eps figures, submitted to Phys Rev Let
BER Analysis of Full Duplex Relay assisted BPSK-SIM based VLC System for Indoor Applications
This paper contemplates a relay-assisted visible light communication (VLC)
system, where the light source (Table lamp) acts as a relay node and cooperates
with the main light source. Following the IEEE 802.15.7r1 VLC reference channel
model, we assume that there are two different light sources present in an
office room. The first one is the source terminal present on the ceiling and
another one is the desk lamp that serves as the relay station which works in
full-duplex method. Because of the loop interference channel, we model VLC
relay terminal using ray tracing simulations. We have analyzed bit error rate
(BER) performance of the relay-assisted VLC system using binary phase shift
keying-subcarrier intensity modulation (BPSK-SIM) technique. The proposed
method outperforms existing phase shift keying (PSK) and square M-quadrature
amplitude modulation (M-QAM) techniques. The proposed VLC system using BPSK-SIM
technique achieves a BER performance of for an SNR of 20 dB. The results of
proposed full duplex and half duplex relayed VLC system are evaluated using
equal power allocation (EPA) and optimum power allocations (OPA) techniques
over three different modulation schemes which are 2-PSK, square M-QAM,
BPSK-SIM
Studies on immunocytochemical localization of inhibin-like material in human prostatic tissue: comparison of its distribution in normal, benign and malignant prostates.
A specific antiserum has been generated against inhibin-like material (ILM) of prostatic origin. Using the immunoperoxidase technique, localization of ILM has been examined in a total of 114 prostates including normal (4 specimens), malignant (46) and hyperplastic (55) tissues. ILM positive immunocytochemical reactions were confined to the cytoplasm and not the nucleus of the prostatic acinar cells in the three categories of prostate, whereas the stroma showed negative reactions. The intensity of positive reactions decreased in the following order: Hyperplasia, incidental and moderately differentiated carcinomas, poorly differentiated carcinomas, whereas metaplasia and granulomatous prostatitis gave negative reactions for ILM. Using this experimental protocol, 200 non-prostatic tissue were found to be completely negative, demonstrating the specificity of the test for prostatic epithelium. These findings indicate a potential use of ILM as a marker of prostatic tissue
A bacterial ratchet motor
Self-propelling bacteria are a dream of nano-technology. These unicellular
organisms are not just capable of living and reproducing, but they can swim
very efficiently, sense the environment and look for food, all packaged in a
body measuring a few microns. Before such perfect machines could be
artificially assembled, researchers are beginning to explore new ways to
harness bacteria as propelling units for micro-devices. Proposed strategies
require the careful task of aligning and binding bacterial cells on synthetic
surfaces in order to have them work cooperatively. Here we show that asymmetric
micro-gears can spontaneously rotate when immersed in an active bacterial bath.
The propulsion mechanism is provided by the self assembly of motile Escherichia
coli cells along the saw-toothed boundaries of a nano-fabricated rotor. Our
results highlight the technological implications of active matter's ability to
overcome the restrictions imposed by the second law of thermodynamics on
equilibrium passive fluids.Comment: 4 pages, 3 figure
- …