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ABSTRACT
We place constraints on the matter density of the Universe and the amplitude of clustering
using measurements of the galaxy two-point correlation function from the Sloan Digital
Sky Survey (SDSS). We generate model predictions for different cosmologies by populating
rescaled N-body simulations with galaxies using the subhalo abundance matching (SHAM)
technique. We find �M = 0.29 ± 0.03 and σ 8 = 0.86 ± 0.04 at 68 per cent confidence by
fitting the observed two-point galaxy correlation function of galaxies brighter than Mr = −18
in a volume-limited sample of galaxies obtained by the SDSS. We discuss and quantify
potential sources of systematic error and conclude that while there is scope for improving its
robustness, the technique presented in this paper provides a powerful low-redshift constraint
on the cosmological parameters that is complementary to other commonly used methods.

Key words: methods: numerical – galaxies: haloes – cosmological parameters – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Determining cosmological parameters such as the matter density of
the Universe and the amplitude of clustering is a key goal of cosmol-
ogy. Measurements of the clustering of galaxies provide a unique
window into the distribution of dark matter in the Universe from
which cosmological parameters can be inferred. Galaxy surveys
map the distribution of visible baryons which indirectly trace the
underlying distribution of the gravitationally dominant dark mat-
ter. While the distribution of dark matter for a given cosmology
can be reliably computed from first principles using cosmologi-
cal N-body simulations, because of uncertainties in the detailed
physics of galaxy formation – gas cooling, star formation, feed-
back, etc. – the distribution of galaxies cannot be robustly predicted
from first principles. Consequently, one of the principal impedi-
ments in inferring cosmological information from observations of
galaxy clustering is galaxy bias, the difference between the distri-
bution of galaxies and the underlying dark matter. In this paper,
we use a simple non-parametric model to relate observed galaxy
luminosity to halo mass in an N-body simulation and use this model
to place constraints on the universal matter density (�M) and the
amplitude of clustering (σ 8) by fitting the observed clustering of
galaxies.

We relate (sub)haloes in our N-body simulation to observed
galaxies using subhalo abundance matching (SHAM). SHAM is
a simple, non-parametric model based on assuming a monotonic
relationship between observed galaxy luminosity and simulated
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(sub)halo mass. In this model, all galaxies are assumed to be con-
tained within dark matter subhaloes, and galaxy luminosity is as-
sumed to be monotonically related to the present-day subhalo mass
for central subhaloes and the subhalo mass at the accretion epoch for
satellite subhaloes. SHAM takes only the space density of galaxies
as input and predicts the clustering of a galaxy population. We use
it to predict the clustering of observed volume-limited samples of
galaxies. Distinct cosmologies produce distinct populations of dark
matter haloes and subhaloes (Zheng et al. 2002); thus, for each cos-
mology, the SHAM model predicts a distinct galaxy autocorrelation
function.

SHAM has been successfully used to match theoretical pre-
dictions to observables. For example, Guo et al. (2010) match
the observed stellar mass–halo mass relation by populating N-
body simulations using the SHAM technique. Trujillo-Gomez et al.
(2011) match the observed circular velocity statistics using a simi-
lar method. Simha et al. (2012) found good agreement between its
assumptions and the output from a cosmological smoothed particle
hydrodynamics (SPH) simulation which incorporated gas physics,
star formation and feedback from supernovae-driven winds. While
SHAM has mainly been used for galaxy formation applications,
Vale & Ostriker (2006) employ the technique to draw inferences
about cosmological parameters finding that the Wilkinson Mi-
crowave Anisotropy Probe 1 (WMAP1) cosmology with �M = 0.3
and σ 8 = 0.9 predicts galaxy cluster mass-to-light ratios that are
too high compared to the observations.

Running a suite of high-resolution cosmological N-body sim-
ulations to adequately sample the cosmological parameter space
is computationally demanding. Instead, we rescale the masses,
positions and velocities of haloes/subhaloes obtained from one
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simulation to different target cosmologies. We use the reduced
version of the rescaling technique of Angulo & White (2010) as
implemented by Ruiz et al. (2011) to construct subhalo catalogues
for a given set of cosmological parameters. Several authors (An-
gulo & White 2010; Ruiz et al. 2011; Guo et al. 2013) have shown
that the relevant properties of (sub)haloes in such scaled models are
very close to those in simulations carried out directly with the target
cosmology.

Our approach is similar in spirit to previous studies such as Tinker
et al. (2012), who use halo occupation distribution (HOD) models;
Cacciato et al. (2013), who use conditional luminosity function
(CLF) combined with the halo model; and Harker, Cole & Jenkins
(2007), who use semi-analytic models and a similar simulation
rescaling technique to fit the observed clustering of galaxies to infer
cosmological parameters. In contrast to the semi-analytic models
of galaxy formation used by Harker et al. (2007), we do not make
any assumptions about the detailed gas physics that is involved
in the process of galaxy formation. Although HOD models such
as those used by Tinker et al. (2012) are also based on statistical
descriptions rather than detailed modelling of the gas physics, there
are significant differences between our techniques. HOD models
describe galaxy bias using a probability distribution P(N|M), the
probability that a halo of mass M contains N galaxies of a given
type. In HOD models, the satellite occupation function, the mean
number of satellites as a function of halo mass, is constructed using
a parametric model. In contrast, in SHAM, the satellite occupation
function is determined by the N-body simulation and directly tied
to the cosmological model. Because SHAM introduces a stronger
prior on the relation between the galaxy and halo populations, it has
the potential to get useful cosmological constraints from weaker
data.

In Section 2, we describe our methods – data, simulation, SHAM
and rescaling technique. In Section 3, we describe our theoretical
model and how it is sensitive to different cosmologies. In Section 4,
we discuss our results and constraints on cosmological parameters.
In Section 5, we discuss systematic uncertainties in our technique.
In Section 6, we discuss the utility of our model in fitting other data
sets to obtain complementary constraints on the cosmology. Finally,
in Section 7, we summarize our results.

2 M E T H O D S

2.1 Data

Our galaxy clustering measurements are obtained from 7900 deg2

of sky observed by the Sloan Digital Sky Survey (SDSS; Zehavi
et al. 2011). We restrict our analysis to volume-limited samples of
galaxies.

The clustering quantity we use for each sample is the projected
autocorrelation function wp(rp) defined as

wp(rp) = 2
∫ πmax

0
ξ (rp, π) dπ, (1)

where rp is the projected separation between two galaxies, π is the
line-of-sight separation between two galaxies and ξ (rp, π ) is the
measured two-dimensional correlation function. Due to the finite
volume of the survey, the integral is limited to πmax = 40 h−1 Mpc.

Our analysis is primarily focused on a volume-limited sample of
galaxies brighter than Mr =−18.0. In addition, we make use of other
volume-limited samples to test the robustness of our conclusions.
The error estimates for each clustering sample are computed using
the jackknife technique (see Zehavi et al. 2011 for more details).

2.2 Simulations

We use two simulations, the Millennium Simulation (MS; Springel
et al. 2005) and the higher resolution Millennium II simulation
(MS-II; Boylan-Kolchin et al. 2009). Both simulations follow the
evolution of 21603 particles from z = 127 to 0 in a � cold
dark matter (�CDM) cosmology (inflationary, cold dark matter
with a cosmological constant) with �M = 0.25, �� = 0.75, h ≡
H0/100 km s−1 Mpc−1 = 0.73, primordial spectral index ns = 1
and the amplitude of mass fluctuations, σ 8 = 0.9, where σ 8 is the
linear theory rms mass fluctuation amplitude in spheres of radius
8 h−1 Mpc at z = 0. These parameter values were chosen to agree
with WMAP1 data (Spergel et al. 2003), and are different from but
reasonably close to current estimates from the cosmic microwave
background (CMB; Larson et al. 2011) and large-scale structure
(Reid et al. 2010), the main difference is that the more recent data
favour a lower value of σ 8.

The MS simulates a comoving box that is 500 h−1 Mpc on
each side, while the MS-II simulates a comoving box that is
100 h−1 Mpc on each side. The simulation particle masses are mp =
8.6 × 108 h−1 M� in MS and 6.9 × 106 h−1 M� in MS-II.

For each output epoch in each simulation, the friends-of-friends
(FOF) algorithm is used to identify groups by linking together par-
ticles separated by less than 0.2 of the mean interparticle separation
(Davis et al. 1985). The SUBFIND algorithm (Springel, Yoshida &
White 2001) is then applied to each FOF group to split it into a set
of self-bound subhaloes. The central subhalo is defined as the most
massive subunit of an FOF group. We construct subhalo merger
trees which link each subhalo at each epoch to a unique descen-
dent in the following epoch. These merger trees allow us to track
the formation history of each (sub)halo that is identified at z = 0.
Springel et al. (2001) and Boylan-Kolchin et al. (2009) provide a
detailed description of these simulations and the post-processing
techniques.

2.3 Subhalo abundance matching

SHAM is a technique for assigning galaxies to simulated dark matter
haloes and subhaloes. The essential assumptions are that all galaxies
reside in identifiable dark matter substructures and that luminosity
or stellar mass of a galaxy is monotonically related to the potential
well depth of its host halo or subhalo. Some implementations use
the maximum of the circular velocity profile as the indicator of
potential well depth, while others use halo or subhalo mass. The
first clear formulations of SHAM as a systematic method appear in
Conroy, Wechsler & Kravtsov (2006) and Vale & Ostriker (2006),
but these build on a number of previous studies that either test the
underpinnings of SHAM or implicitly assume SHAM-like galaxy
assignment (e.g. Colı́n et al. 1999; Kravtsov et al. 2004; Nagai &
Kravtsov 2005).

N-body simulations produce subhaloes that are located within the
virial radius of haloes. The present mass of subhaloes is a product
of mass built up during the period when the halo evolves in isolation
and tidal mass-loss after it enters the virial radius of a more massive
halo (e.g. Kazantzidis et al. 2004; Kravtsov et al. 2004). The stellar
component, however, is at the bottom of the potential well and more
tightly bound making it less likely to be affected by tidal forces.
Therefore, several authors (e.g. Conroy et al. 2006; Vale & Ostriker
2006) argue that the properties of the stellar component should be
more strongly correlated with the subhalo mass at the epoch of
accretion rather than at z = 0.



Cosmological constraints from SHAM 3

Vale & Ostriker (2006) apply a global statistical correction to
subhalo masses relative to halo masses (as do Weinberg et al. 2008),
while Conroy et al. (2006) explicitly identify subhaloes at the epoch
of accretion and use the maximum circular velocity at that epoch.
Our formulation here is similar to that of Conroy et al. (2006),
though we use mass rather than circular velocity. Specifically, we
assume a monotonic relationship between galaxy luminosity and
halo mass at the epoch of accretion and determine the form of this
relation by solving the implicit equation

nS(< Mr ) = nH(> MH), (2)

where nS and nH are the number densities of galaxies and haloes,
respectively, Mr is the galaxy r-band magnitude threshold and MH

is the halo mass threshold chosen so that the number density of
haloes above it is equal to the number density of galaxies in the
sample. The quantity MH is defined as follows:

MH =
{

Mhalo(z = 0) for distinct haloes,

Mhalo(z = zsat) for subhaloes,
(3)

where zsat is the epoch when a halo first enters the virial radius of a
more massive halo.

Guo et al. (2013) compare the mass functions of SHAM-selected
subhaloes (see their fig. 1) in MS and MS-II finding good conver-
gence over the mass range where both simulations have adequate
resolution. At z = 0, they find that the (SHAM-selected) subhalo
mass function converges for subhaloes with more than ∼103 par-
ticles at infall. This is more than an order of magnitude greater
than the level at which the halo mass function converges (Boylan-
Kolchin et al. 2009), because subhaloes experience tidal stripping
after infall and must therefore have a larger number of particles at
infall to be reliably identified at z = 0.

Fig. 1 shows the satellite occupation function as a function of halo
mass, i.e. the mean number of SHAM-selected satellite subhaloes
per parent halo as a function of parent halo mass. In both MS and
MS-II, we rank order subhaloes identified at z = 0 by MH, mass at
z = 0 for central subhaloes and at infall for satellite subhaloes. We
then select subhaloes above a mass threshold of 8.6 × 1010 h−1 M�
which is 100 times the particle mass in MS. Because of its higher

Figure 1. Mean number of SHAM-selected subhaloes per halo as a function
of parent halo mass at z = 0. Subhaloes above an infall mass threshold of
8.6 × 1010 h−1 M� are selected which corresponds to 100 times the particle
mass in the MS.

Figure 2. Two-point correlation function of z = 0 subhaloes that are above
an infall mass threshold. In the MS-II, we only include subhaloes identified
at z = 0, while in the MS, we add a fraction of disrupted subhaloes to those
identified at z = 0 so that we match the mean number of subhaloes per
parent halo as a function of parent halo mass in MS-II (see Fig. 1).

resolution (factor of ∼ 100 difference in particle mass), more satel-
lite subhaloes are identified in MS-II compared to MS across the
range of parent halo masses.

In MS, there is a missing population of satellite subhaloes that
have fewer than 103 particles at infall and cannot be identified at
z = 0 because of subsequent stripping, although similar objects are
identified in the higher resolution MS-II. In order to exploit the
larger box size and better statistics in MS, we construct a subhalo
catalogue, MS Plus (MS+), that matches the satellite occupation
function of MS-II. To achieve this, we augment the subhaloes iden-
tified at z = 0 in MS with additional subhaloes that are identified
at high z, but cannot be identified at z = 0. These subhaloes are
randomly chosen from among disrupted subhaloes that were above
the mass threshold at infall. The number of additional subhaloes
in each parent halo mass bin is set so as to obtain a match to the
MS-II satellite occupation function. The z = 0 positions of each
disrupted subhalo are obtained by tracking the position of its most
bound particle from zsat to z = 0.

The difference in the satellite occupation functions between MS
and MS-II depends on the mass threshold that is applied, and for
a mass threshold above ∼1012 h−1 M�, they converge. Therefore,
the MS+ catalogue has to be freshly constructed for each mass
threshold that is required. While fitting the SDSS data, we carry out
the procedure to construct MS+ with a mass threshold which gives
the galaxy number density of the observed sample.

Fig. 2 shows the two-point correlation function of SHAM-
selected subhaloes in MS-II compared to MS+. On scales not af-
fected by box size effects, the autocorrelation functions extracted
from the MS-II simulation and our MS+ method described above
show strong agreement demonstrating the efficacy of this procedure.

2.4 Rescaling technique

Using the clustering of galaxies at z = 0 to infer cosmological
parameters requires modelling the growth of density perturbations
in the non-linear regime. In principle, one would need a numeri-
cal simulation for each set of cosmological parameters. However,
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running such a suite of high-resolution cosmological N-body sim-
ulations to adequately sample the cosmological parameter space is
computationally expensive.

Instead, we rescale our simulation from its ‘native’ cosmology
to different cosmologies with slightly different parameters, using a
technique that involves rescaling the box length, velocity and mass
units, and relabelling output times. The first attempt to rescale the
simulation output to a different cosmology was carried out by Zheng
et al. (2002). Harker et al. (2007) used this rescaling technique in
combination with semi-analytic models of galaxy formation to con-
strain the cosmological parameters. More recently, Angulo & White
(2010) presented the technique of rescaling the output of a cosmo-
logical simulation from its ‘native’ cosmology to a cosmology with
different parameters as a systematic algorithm.

In this paper, we use the Angulo & White (2010) algorithm to
generate (sub)halo catalogues for a given set of cosmological pa-
rameters. Following Ruiz et al. (2011), we do not apply the final step
of the Angulo & White (2010) algorithm which involves adjusting
the amplitudes of large-scale linear modes which would in any case
have negligible effects on the clustering statistics considered in this
paper.

Angulo & White (2010) and Ruiz et al. (2011) find good agree-
ment between the halo catalogues extracted from simulations scaled
to a target cosmology and simulations run with the target cosmology.
Guo et al. (2013) compare the properties of the subhalo catalogue
in a simulation run with the WMAP7 cosmology (�M = 0.27 and
σ 8 = 0.8) to the subhalo catalogue obtained by rescaling the MS to
the WMAP7 cosmology using a technique identical to that imple-
mented in this paper. They find very good agreement between the
mass functions (Fig. 1) and two-point correlation functions (Fig. 4)
of SHAM-selected subhaloes indicating that the rescaling technique
implemented in this paper does not introduce significant biases in
subhalo positions and masses.

3 C O S M O L O G I C A L C O N S T R A I N T S FRO M
T H E G A L A X Y T WO - P O I N T C O R R E L AT I O N
F U N C T I O N

We probe the cosmology by fitting the observed galaxy two-point
correlation function of a volume-limited sample of galaxies. To gen-
erate a theoretical prediction for the two-point correlation function
for a given cosmology, we implement the following steps. First,
we rescale our simulation to the target cosmology using the pro-
cedure described in Section 2.4. We then select (sub)haloes using
the SHAM procedure described in Section 2.3. Briefly, subhaloes
above a mass threshold at infall for satellite subhaloes and at z = 0
for central subhaloes are selected. Our subhalo mass threshold is
set so that the number density of SHAM-selected subhaloes in our
simulation is equal to the number density of observed galaxies in the
sample we are fitting to (see equation 2). Finally, we compute the
projected two-point correlation function of these SHAM-selected
subhaloes in the simulation cube.

Fig. 3 provides a pedagogical demonstration of our technique
demonstrating that, in principle, it could be used to obtain cos-
mological constraints. Panel (a) shows the effect of changing �M

on the two-point galaxy correlation function in a standard �CDM
cosmology with all other cosmological parameters held constant.
Decreasing �M boosts the two-point correlation function on all
scales. Panel (b) shows the effect of changing σ 8 on the two-point
galaxy correlation function in a standard �CDM cosmology with all
other cosmological parameters held constant. Increasing σ 8 boosts
the two-point correlation function on all scales.

Figure 3. A pedagogical demonstration of the method employed in this
paper. The effect on the two-point correlation function of SHAM-selected
subhaloes of changing �M at fixed σ 8 in panel (a) and of changing σ 8 at
fixed �M in panel (b).

4 C O S M O L O G I C A L C O N S T R A I N T S

We determine constraints on the cosmological parameters by com-
paring the predicted two-point galaxy correlation function for a grid
of models in the σ8−�M plane to the SDSS-observed two-point
galaxy correlation function of galaxies brighter than Mr = −18. We
restrict our analysis to scales below 10 h−1 Mpc. We calculate the
expected correlation function at z = 0.1 as a function of cosmology
which corresponds to the median redshift of the data we compare
to.

We compute the χ2 for each model using the full covariance
matrix. The covariance matrix is calculated by Zehavi et al. (2011)
using jackknife resampling (see section 2.2 of Zehavi et al. 2011
for further details of the method). Besides the two cosmological
parameters, �M and σ 8, there are no free parameters in our model.

We impose the following flat priors on our cosmological param-
eters such that 0.2 ≤ �M ≤ 0.35 and 0.65 ≤ σ 8 ≤ 1. Rescaling
our simulation to a model with a different amplitude of cluster-
ing relies on relabelling the simulation output epochs. Since our
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Figure 4. The solid curve shows the galaxy two-point correlation function
of our best-fitting model with �M = 0.275 and σ 8 = 0.86. The points with
error bars show the SDSS-observed galaxy two-point correlation function
from a volume-limited sample of galaxies with Mr ≤ −18.0.

simulations are only run to z = 0, we are restricted to σ 8 ≤ 0.9. For
0.6 ≤ σ 8 ≤ 0.9, linearly interpolating log(ξ ) with σ 8 works ac-
curately, and so we extend this scaling to extrapolate the galaxy
two-point correlation function to generate predictions for models
with σ 8 ≥ 0.9.

Fig. 4 shows the galaxy two-point correlation function for our
best-fitting model with �M = 0.275 and σ 8 = 0.86 plotted against
the data. The χ2 for our best-fitting model is 9.21. As we have
two free parameters and nine data points, this corresponds to a χ2

per degree of freedom of 1.3. The probability of drawing a value
≥ 9.21 from a χ2 distribution with 7 degrees of freedom is 0.24,
and so our best-fitting model is an acceptable fit to the data.

Fig. 5 shows our main result, cosmological constraints in the
�M–σ 8 plane. Because of the way �M and σ 8 affect the two-point
galaxy correlation function (see Section 3), our constraints on them
are correlated. Note that only the portion of the outer contour with

Figure 5. Joint constraint in the σ 8–�M plane. The inner contour shows the
boundary of the 68 per cent confidence region and the outer contour shows
the 95 per cent confidence region.

Figure 6. Marginalized posterior probability distribution of σ 8 in panel (a)
and of �M in panel (b) from fitting the two-point galaxy correlation function.

σ 8 ≥ 0.9 depends on our extrapolation of the two-point correlation
function.

Fig. 6 shows the marginalized probability distributions of �M

and σ 8. Our marginalized constraints on the individual parameters
are �M = 0.29 ± 0.03 and σ 8 = 0.86 ± 0.04 (68 per cent).

We emphasize that our constraints on these parameters are ob-
tained for fixed values of other cosmological parameters. We defer
discussion of the implications of this to the final section.

5 SYSTEMATI C UNCERTAI NTI ES

We discuss the systematic uncertainties in our analysis, focusing
on the uncertainties in our theoretical modelling. See Zehavi et al.
(2011) for a discussion of observational uncertainties.

5.1 Scatter in SHAM

SHAM assumes a strictly monotonic relation between (sub)halo
mass and galaxy r-band luminosity with zero scatter. While the
assumption of zero scatter is idealized, several observational stud-
ies (e.g. van den Bosch et al. 2007; Zheng, Coil & Zehavi 2007)
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indicate that the scatter in luminosity at fixed (sub)halo mass is
small. While from the theory side, Simha et al. (2012) find a strong
correlation between r-band luminosity and subhalo mass in their
SPH simulations, with a small scatter of 0.15 dex in luminosity at
fixed subhalo mass.

Scatter in the subhalo mass–luminosity relation affects the cor-
relation function by altering the subhaloes that are included in the
sample. The effect of scatter is felt only at the boundary of the sam-
ple since assigning galaxies to different haloes/subhaloes within the
sample does not change the correlation function. Therefore, the ef-
fect of scatter in the luminosity–subhalo mass relation depends on
how steep the luminosity–bias relation is at the boundary of the sam-
ple. For our sample, random scatter in the subhalo mass–luminosity
relation has negligible impact on the galaxy/subhalo two-point cor-
relation function. However, a similar level of scatter in the subhalo
mass–luminosity relation will have a larger effect on the correlation
function at a brighter luminosity threshold where the luminosity–
bias relation is steeper. Additionally, scatter could potentially be a
significant source of uncertainty for other statistics that are more
sensitive to accurate identification of the host haloes of galaxies.

5.2 Satellite galaxy fraction

SHAM relies on accurately resolving and identifying substructures
and recovering their properties at infall. Since we trace the zsat

progenitors of z = 0 substructures, our results are unlikely to be
affected by random fluctuations in the density field of haloes that
may be spuriously identified as substructures. However, if subhaloes
hosting satellite galaxies that have merged with the central galaxy
of the halo are identified as substructures, we would overestimate
the halo occupation of massive haloes. Conversely, subhaloes that
fall into more massive haloes and lose a substantial fraction of
their mass due to tidal stripping may no longer be resolved in the
simulation at z = 0, although they may still host satellite galaxies.

Simha et al. (2012) find that for a fixed subhalo mass, satellite
galaxies in their SPH simulation are typically somewhat less lumi-
nous than central galaxies because of differences in the ages of their
respective stellar populations. Compared to central galaxies of sim-
ilar stellar mass, satellite galaxies have an older stellar population
and are therefore less luminous. If this were to be true of the real
Universe, SHAM would underestimate the luminosities of central
galaxies and overestimate the luminosities of satellite galaxies, re-
sulting in more satellite galaxies being included in a sample above
a given luminosity threshold and consequently an overestimate of
the satellite galaxy fraction.

Fig. 7 shows the fraction of galaxies that are satellites, fsat =
nsat/ngal, where nsat is the number of satellite galaxies and ngal is
the total number of galaxies, in bins of (sub)halo mass at infall.
Our best-fitting model has an overall fsat = 0.3. This is in good
agreement with Zehavi et al. (2011), who find fsat = 0.32 ± 0.02 by
fitting HOD models to the correlation function of the same sample
of galaxies used in this paper. However, the satellite fraction found
by Zehavi et al. (2011) is at fixed cosmology, and as we discuss
below, there is a degree of degeneracy between the satellite fraction
and the cosmological parameters.

Fig. 8 shows the effect of changing fsat on the galaxy correlation
function. To increase fsat, we include additional ‘merged’ subhaloes,
i.e. subhaloes that exist at high redshift, but have merged by z = 0
using its most bound particle when it was last identified to track
its position to z = 0. We then compute the two-point correlation
function for this sample of subhaloes. To decrease fsat, we eliminate
a fraction of subhaloes chosen randomly.

Figure 7. Fraction of galaxies that are satellites, fsat = nsat/ngal, where nsat

is the number of satellite galaxies and ngal is the total number of galaxies,
in bins of (sub)halo mass at infall as a function of (sub)halo mass at infall.

Figure 8. Effect of changing the fraction of satellite galaxies on the galaxy
two-point correlation function. The black solid curve shows our fiducial
model, while the red and blue dotted curves show the models with a
10 per cent higher and lower fsat compared to the fiducial model, respec-
tively (fsat = 0.30 ± 0.03).

The galaxy correlation function on scales below ∼1 h−1 Mpc
is determined by pairs of galaxies within the same host halo. A
higher fsat increases the number of close pairs, boosting the two-
point correlation function on small scales. On larger scales, the
galaxy correlation function is determined by pairs of galaxies in
different haloes. Although the effect of fsat on these scales is much
smaller, the correlation function is higher in models with higher fsat

because highly biased objects in massive haloes are present in a
larger number of pairs compared to a model with lower fsat.

The effect on the galaxy correlation function of changing the
cosmological parameters shows some degeneracy with the effect of
changing fsat. At fixed �M, a 10 per cent increase in fsat from our
fiducial value of fsat = 0.3 to 0.33 changes the best-fitting value of
σ 8 from 0.86 to 0.83.
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Figure 9. The maximum of the circular velocity profile, vmax, versus the
halo mass, MH; both measured at infall for subhaloes and at z = 0 for
independent haloes. Each green point represents a central galaxy and each
red point represents a satellite galaxy. The solid and dashed curves show the
mean vmax in bins of MH for central and satellite galaxies, respectively.

Our analysis so far has assumed that galaxy luminosity is mono-
tonically related to subhalo mass at infall. Using a different subhalo
property as a luminosity proxy would change fsat and hence alter the
predicted galaxy correlation function for a given set of cosmological
parameters.

Reddick et al. (2012) find large differences in the predicted galaxy
two-point correlation function between SHAM-like models that use
subhalo properties at infall and models that use z = 0 subhalo
properties. Because subhaloes undergo substantial tidal stripping
after infall, while the more centrally concentrated galaxies at their
centres do not, M0 (z = 0 mass) and v0 (z = 0 circular velocity)
would both underestimate satellite galaxy luminosity and hence fsat

severely, making them unsuitable as galaxy luminosity proxies.
A more realistic alternative galaxy luminosity proxy to subhalo

mass at infall (MH) is vmax, the maximum of the circular velocity
profile at infall for subhaloes and at z = 0 for independent haloes.
Fig. 9 shows vmax at infall for satellites and at z = 0 for central
galaxies plotted against MH. Each point in the figure represents an
individual galaxy, while the solid and dashed curves show the mean
vmax in bins of MH for central and satellite galaxies. Generally, vmax

is well correlated with MH in our simulation for both satellite and
central galaxies considered independently. However, satellite sub-
haloes have systematically higher vmax than central haloes at fixed
MH across the range of halo masses in our simulation. This could be
because less concentrated subhaloes are more easily disrupted and
the surviving subhaloes have higher than average concentrations.
Alternatively, it could be because subhaloes formed earlier than
central haloes of similar mass and are hence more concentrated.

Using vmax instead of MH for abundance matching at fixed cos-
mology (fixed at our best-fitting model for MH abundance matching)
increases the satellite fraction fsat from 0.3 to 0.38, which is 3σ away
from the value of fsat found by Zehavi et al. (2011) by fitting HOD
models to the two-point correlation function of the same sample of
galaxies.

When abundance matching using vmax as the galaxy luminosity
proxy, the effect of the large increase in fsat on the galaxy correlation
function on large scales can be offset by changing the cosmologi-

cal parameters. However, on scales below 0.4 h−1 Mpc, abundance
matching using vmax significantly overpredicts the galaxy correla-
tion function, and we are unable to obtain a match to the data for
the range of cosmological parameters we consider.

We also consider a model where we use vmax as a luminosity proxy
for abundance matching, but enforce fsat = 0.3 (value of fsat obtained
from abundance matching using MH as a luminosity proxy). We
create a sample with fsat = 0.3 by eliminating satellite subhaloes
below a vmax threshold at z = 0 and including additional central
subhaloes in their place to preserve the overall number density of
subhaloes. This yields a very similar galaxy autocorrelation function
to that obtained from abundance matching using MH as the galaxy
luminosity proxy. For fsat = 0.3, abundance matching using vmax as
the luminosity proxy yields cosmological constraints (�M = 0.28
and σ 8 = 0.84) that are consistent with our results obtained with
abundance matching using MH as the galaxy luminosity proxy to
within 0.5σ .

5.3 Rescaling technique

Ruiz et al. (2011) compare the properties of haloes in a rescaled
simulation to a simulation run with the target cosmological pa-
rameters. They find that over 99 per cent of haloes with more than
50 particles are recovered in the rescaled simulation. In the rescaled
simulations, the masses of haloes are systematically underestimated
by ∼5 per cent. But because we use only halo mass to assign a rank
to subhaloes, we are not affected by this systematic bias. However, it
would be a source of error if a statistic that depended directly on halo
mass were being used. The rescaled halo mass–‘native’ halo mass
relation displays scatter. For our purpose, it would mimic the effect
of scatter in the subhalo mass–luminosity relation discussed earlier
(Section 5.1). The positions of haloes in their rescaled simulations
are recovered to a precision of within 100 h−1 kpc.

5.4 Other galaxy samples

Our cosmological constraints have been obtained by fitting our
model to the observed clustering of one volume-limited sample of
galaxies with Mr ≤ −18. As a consistency check, we compare the
clustering predictions of our model with four other volume-limited
samples of galaxies taken from SDSS (Zehavi et al. 2011) with
Mr ≤ −18.5, −19, −19.5 and −20.5 corresponding to a number
density of galaxies of 2.311, 1.676, 1.12 and 0.318 10−2 h−3 Mpc3,
respectively. The sample with Mr ≤ −20.5 corresponds approxi-
mately to galaxies brighter than L∗, the characteristic galaxy lumi-
nosity above which the number density of galaxies falls exponen-
tially.

For each of these samples, we generate the predicted galaxy two-
point correlation function for our best-fitting cosmological model
by measuring the clustering of SHAM-selected subhaloes above
an infall mass threshold determined so that the number density of
subhaloes is equal to the number density of galaxies in the sample.
Each panel of Fig. 10 shows the galaxy two-point correlation func-
tion predicted by our best-fitting model to the Mr ≤ −18 sample
plotted against the observed galaxy two-point correlation function
for the corresponding sample. Formally, our model is a good fit
to the data for the volume-limited samples with Mr ≤ −18.5, −19
and −19.5, but not for the brightest sample with Mr ≤ −20.5.

The error bars in each panel show the diagonal errors on the
observed correlation function. For our main sample and samples
with relatively high number density, the error on the correlation
function extracted from our simulation is negligible compared to
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Figure 10. In each panel, the points with error bars show the SDSS-
observed galaxy two-point correlation function in a volume-limited sample
of galaxies brighter than Mr = −18.5, −19, −19.5 and −20.5. The solid
curve in each panel shows the galaxy two-point correlation function pre-
dicted by our best-fitting model with �M = 0.275 and σ 8 = 0.86 for the
corresponding galaxy sample. Lower windows of each panel show the ratio
of the model correlation function to the data.

the observational errors and can therefore be ignored. However,
because of our finite simulation volume, as we go to brighter samples
with low number density, the jackknife estimates of the errors on our
predicted correlation function are sufficiently large to be comparable
to the observational errors.

When we fit models to these other galaxy samples by allowing
the cosmological parameters to vary, we find that for each sample,
the best-fitting cosmological parameters are slightly different, but
consistent with the constraints from our main sample (Mr ≤−18). In
principle, tighter constraints could be obtained from a joint fit to all
the data sets, but this would require an estimate of their covariance.

6 C O M P L E M E N TA RY C O N S T R A I N T S
O N C O S M O L O G Y

As we discussed earlier (see Fig. 5), our constraints on �M and σ 8

are correlated because of the way the changes in these parameters
affect the galaxy autocorrelation function (see Fig. 3). To a certain
extent, the effect of a higher �M can be compensated for by a
higher σ 8 if only the galaxy two-point correlation function is used
to constrain the cosmology. But complementary constraints on the
cosmology can be obtained by probing other observables for which
predictions can be generated using the same SHAM model used in
this paper.

Fig. 11 shows the effect of the cosmological parameters on the
mean number of satellite galaxies per halo, 〈N〉sat, as a function of
halo mass in our simulation using our rescaling technique and the
SHAM model. The number of satellite galaxies in a given halo,
Nsat = N − 1, where N is the number of galaxies in the halo. Panel
(a) shows the effect of changing �M at fixed σ 8. Changing �M

affects the halo mass function making haloes with a given number
of satellites more massive for higher �M. Panel (b) shows the effect

Figure 11. Panel (a) shows the effect of changing �M at fixed σ 8 and panel
(b) shows the effect of changing σ 8 at fixed �M on the mean number of
satellite galaxies per halo as a function of halo mass.

of changing σ 8 at fixed �M. Increasing σ 8 increases the number
of haloes of a given mass. Therefore, for a fixed number density
of galaxies, there must be fewer galaxies in each halo compared to
models with lower σ 8.

Decreasing σ 8 and decreasing �M, both boost 〈N〉sat rather than
counteracting each other as they do for the two-point correlation
function. Moving along the degeneracy curve in the �M–σ 8 plane
in Fig. 5 would generate different and easily distinguishable distri-
butions of 〈N〉sat. Therefore, for a given cosmology, the additional
requirement of matching the galaxy two-point correlation function
strongly constrains the HOD, and consequently, a direct measure of
the HOD would place constraints on the cosmology that are com-
plementary to our constraints from fitting the two-point correlation
function.

Tinker et al. (2012) identify one possible direct measure of the
HOD, the mean number of galaxies in haloes of a given mass
and use the ratio of these quantities, M/N, to place constraints on
cosmological parameters.
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7 D I S C U S S I O N A N D C O N C L U S I O N S

We have placed constraints on σ 8 and �M by comparing the SDSS
observed projected galaxy two-point correlation function for a
volume-limited sample of galaxies with Mr ≤ −18 to our model
predictions generated using N-body simulations rescaled to the tar-
get cosmology using the technique of Angulo & White (2010) and
populated with galaxies using SHAM.

Assuming a flat �CDM cosmology with nS = 1, we find
�M = 0.29 ± 0.03 and σ 8 = 0.86 ± 0.04 at 68 per cent confi-
dence.

Fig. 12 compares our constraint in the �M−σ8 plane to constraints
from WMAP7 (Komatsu et al. 2011). Our estimates of both σ 8 and
�M are high compared to WMAP7, but are consistent at the ∼2σ

level.
Our constraints are obtained for fixed values of other cosmolog-

ical parameters. In contrast, the WMAP7 constraints are obtained
by marginalizing over all other cosmological parameters. One sig-
nificant implication of this is in regard to the shape of the power
spectrum. We have assumed that the value of the primordial spectral
index nS = 1 in our simulation. In contrast, the WMAP7 best-fitting
value of nS is 0.96, and nS = 1 is excluded at more than 2σ . While
we are unable to comment on the effect of setting nS = 0.96, as
this would require new N-body simulations with nS = 0.96, on our
constraints, forcing nS = 1 while fitting the CMB data would result
in a higher best-fitting value of σ 8.

Our results are consistent with and comparable to Tinker et al.
(2012), who fit the SDSS galaxy two-point correlation function
and M/N (cluster mass to number ratio) using their HOD models,
finding σ 8 = 0.85 ± 0.06 and �M = 0.29 ± 0.03.

However, there is some tension between our results and those
of Harker et al. (2007), who use semi-analytic models to populate
N-body simulations rescaled to a given cosmology using a tech-
nique similar to that of this paper and fit to the SDSS clustering
finding σ 8 = 0.97 ± 0.06. In contrast to Harker et al. (2007), who
use a semi-analytic model of galaxy formation to populate their
N-body simulation with galaxies, we use SHAM which only as-
sumes a monotonic relationship between galaxy luminosity and sub-
halo mass at infall. Secondly, the resolution of MS-II is ∼2000 times

Figure 12. Joint constraint in the σ8−�M plane. The inner contour shows
the boundary of the 68 per cent confidence region and the outer contour
shows the 95 per cent confidence region. The filled contour is the result
from this work, while the black solid open contours are from WMAP7
(Komatsu et al. 2011).

higher than the simulations used by Harker et al. (2007). Thirdly,
Harker et al. (2007) use a Monte Carlo scheme to generate a merger
tree for a halo based on its mass. Consequently, satellite galaxy
positions are not obtained from the simulation, and they are instead
placed on random particles within the halo. We are unable to quan-
tify the effects of each of these factors. However, repeating the work
of Harker et al. (2007) with a high-resolution N-body simulation
and merger trees and subhalo positions extracted from the N-body
simulation would be interesting and could potentially reveal the
source of the tension.

Besides the CMB and galaxy clustering data, several other meth-
ods have been employed to constrain σ 8. For example, Mandelbaum
et al. (2012) find σ 8(�M/0.25)0.57 = 0.80 ± 0.05 using galaxy–
galaxy lensing, and Seljak et al. (2005) find σ 8 = 0.90 ± 0.03 by
combining their analysis of the Lyman α forest power spectrum
with CMB results.

Because our simulation is only run to z = 0, we are unable
to rescale our subhalo catalogue to cosmologies with σ 8 ≥ 0.9.
Our model predictions for σ 8 ≥ 0.9 are based on extrapolating the
correlation function as a function of the cosmological parameters.
While this appears to be a reasonable approximation, it is likely that
it has shortcomings that will be exposed by a simulation that is run
with a higher value of σ 8.

We have examined potential sources of systematic uncertainties
in our technique, both relating to SHAM and the method we employ
for rescaling our simulations to different cosmologies, in Section 5.
The most significant source of systematic uncertainty in our tech-
nique is the fraction of satellite galaxies, fsat, which could either be
underestimated or overestimated in the models, either for numeri-
cal reasons relating to resolution and identification of subhaloes or
due to systematic differences in the growth of central and satellite
galaxies that violate the implicit assumptions of SHAM. The effect
of small changes in fsat on the galaxy correlation function can be
offset by changes to the cosmological parameters. For example, a
10 per cent increase in fsat from our fiducial value of fsat = 0.3 to
0.33 changes the best-fitting value of σ 8 from 0.86 to 0.83 at fixed
�M. However, we cannot obtain a good fit to the observed galaxy
correlation function if fsat is substantially different from the SHAM
prediction. Another source of uncertainty is scatter in the galaxy
luminosity–halo mass relation which is assumed to be perfectly
monotonic in SHAM. Random scatter in the luminosity–halo mass
relation does not affect our cosmological constraints significantly.
However, if the scatter were to be correlated with the large-scale
environment (beyond the halo), the impact on our results could
be significant. The two-point galaxy correlation function on small
scales is sensitive to the distribution of galaxies within massive
haloes. Therefore, our results would be significantly affected if
the distribution of galaxies in haloes were to systematically dif-
fer from the distribution of SHAM-selected subhaloes in N-body
simulations.

Despite these caveats, we emphasize that the technique presented
in this paper can provide tight constraints on the cosmology using
only low-z data. The remarkable tightness of our constraint arises
from the fact that unlike statistical descriptions of the distribution of
galaxies in haloes provided by HOD models or the CLF, we do not
have the freedom to define the HOD. Furthermore, our model does
not make any assumptions about galaxy bias or the detailed physics
of galaxy formation except for requiring a monotonic relationship
between galaxy luminosity and subhalo mass at infall. Addition-
ally, we assume that galaxies are the observational counterparts of
subhaloes identified at z = 0 in an N-body simulation and that each
observed galaxy can be associated with a subhalo.
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While future redshift surveys will provide more volume than the
SDSS, the potential for tightening of the parameter constraints is
limited because of the current systematic uncertainties involved in
this technique. However, substantial improvements in the robust-
ness of this technique can be achieved by future investigations.
First by adopting the shape of the power spectrum P(k) inferred by
the latest CMB observations. Secondly, a large volume simulation
with the resolution of MS-II or higher would remove the need for
the correction to the subhalo fraction that we apply in this work
and the uncertainties associated with it. Systematic uncertainties
associated with the rescaling technique scale with the magnitude of
the difference in cosmological parameters between the ‘native’ and
rescaled cosmology. To minimize this, it would be useful to carry
out a suite of simulations with different cosmological parameters
that span the requisite range and only apply the rescaling technique
to generate predictions for intermediate values of the parameters.
Finally, further investigations of the SHAM technique, particularly
with respect to scatter in the luminosity–halo mass relation and the
distribution of subhaloes within haloes will help to clarify potential
sources of systematic errors involved in this technique.
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