146 research outputs found
In vitro effects of European and Latin-American medicinal plants in CYP3A4 gene expression, glutathione levels, and P-glycoprotein activity
Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 μg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris, M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (−48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study
An investigation of ribosomal protein L10 gene in autism spectrum disorders
<p>Abstract</p> <p>Background</p> <p>Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of <it>RPL10</it>, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism – aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced <it>RPL10 </it>exons and quantified mRNA transcript level of <it>RPL10 </it>in our samples.</p> <p>Methods</p> <p>141 individuals with ASD were recruited in this study. All <it>RPL10 </it>exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of <it>RPL10 </it>was quantified in B lymphoblastoid cell lines (BLCL) of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of <it>RPL10</it>: RPL10-A and RPL10-B.</p> <p>Results</p> <p>No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U = 81, P = 0.7; RPL10-B, U = 61.5, P = 0.2). We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U = 531, P = 0.2; RPL10-B, U = 607.5, P = 0.7).</p> <p>Conclusion</p> <p>Our results suggest that RPL10 has no major effect on the susceptibility to ASD.</p
Variations of the Candidate SEZ6L2 Gene on Chromosome 16p11.2 in Patients with Autism Spectrum Disorders and in Human Populations
Background: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. Methodology/Principal Findings: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. Conclusions/Significance: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD
CCL2/MCP-I Genotype-Phenotype Relationship in Latent Tuberculosis Infection
Among the known biomarkers, chemokines, secreted by activated macrophages and T cells, attract groups of immune cells to the site of infection and may determine the clinical outcome. Association studies of CCL-2/MCP-1 -2518 A/G functional SNP linked to high and low phenotypes with tuberculosis disease susceptibility have shown conflicting results in tuberculosis. Some of these differences could be due the variability of latent infection and recent exposure in the control groups. We have therefore carried out a detailed analysis of CCL-2 genotype SNP -2518 (A/G transition) with plasma CCL-2 levels and related these levels to tuberculin skin test positivity in asymptomatic community controls with no known exposure to tuberculosis and in recently exposed household contacts of pulmonary tuberculosis patients. TST positivity was linked to higher concentrations of plasma CCL2 (Mann Whitney U test; p = 0.004) and was more marked when the G allele was present in TST+ asymptomatic controls (A/G; p = 0.01). Recent exposure also had a significant effect on CCL-2 levels and was linked to the G allele (p = 0.007). Therefore association studies for susceptibility or protection from disease should take into consideration the PPD status as well as recent exposure of the controls group used for comparison. Our results also suggest a role for CCL-2 in maintaining the integrity of granuloma in asymptomatic individuals with latent infection in high TB burden settings. Therefore additional studies into the role of CCL-2 in disease reactivation and progression are warranted
A cognitive behavioral based group intervention for children with a chronic illness and their parents: a multicentre randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Coping with a chronic illness (CI) challenges children's psychosocial functioning and wellbeing. Cognitive-behavioral intervention programs that focus on teaching the active use of coping strategies may prevent children with CI from developing psychosocial problems. Involvement of parents in the intervention program may enhance the use of learned coping strategies in daily life, especially on the long-term. The primary aim of the present study is to examine the effectiveness of a cognitive behavioral based group intervention (called 'Op Koers') <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> for children with CI and of a parallel intervention for their parents. A secondary objective is to investigate why and for whom this intervention works, in order to understand the underlying mechanisms of the intervention effect.</p> <p>Methods/design</p> <p>This study is a multicentre randomized controlled trial. Participants are children (8 to 18 years of age) with a chronic illness, and their parents, recruited from seven participating hospitals in the Netherlands. Participants are randomly allocated to two intervention groups (the child intervention group and the child intervention combined with a parent program) and a wait-list control group. Primary outcomes are child psychosocial functioning, wellbeing and child disease related coping skills. Secondary outcomes are child quality of life, child general coping skills, child self-perception, parental stress, quality of parent-child interaction, and parental perceived vulnerability. Outcomes are evaluated at baseline, after 6 weeks of treatment, and at a 6 and 12-month follow-up period. The analyses will be performed on the basis of an intention-to-treat population.</p> <p>Discussion</p> <p>This study evaluates the effectiveness of a group intervention improving psychosocial functioning in children with CI and their parents. If proven effective, the intervention will be implemented in clinical practice. Strengths and limitations of the study design are discussed.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN60919570">ISRCTN60919570</a></p
Hprt (CAG)146 mice: Age of onset of behavioral abnormalities, time course of neuronal intranuclear inclusion accumulation, neurotransmitter marker alterations, mitochondrial function markers, and susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
We reported previously a model of polyglutamine repeat disorders with insertion of 146 CAG repeats into the murine hypoxanthine phosphoribosyl transferase locus (Hprt (CAG)146 ; Ordway et al. [ 1997 ] Cell 91:753–763), which does not normally contain polyglutamine repeats. These mice develop an adult-onset neurologic phenotype of incoordination, involuntary limb clasping, seizures, and premature death. Histologic analysis demonstrates widespread ubiquinated neuronal intranuclear inclusions (NIIs). We now report characterization of the age of onset of behavioral abnormalities, correlated with the time course of occurrence of NIIs in several brain regions, and the occurrence of NIIs in non-neuronal tissues. Onset of behavioral abnormalities occurred at approximately 22 weeks of age. There was variable time course of expression of NIIs in several brain regions. Assessment of several non-neuronal tissues revealed nuclear inclusions in hepatocytes and choroid plexus epithelium. Γ-Aminobutyric acid (GABA)/benzodiazepine receptors, dopamine D1-like and D2-like receptors, and type 2 vesicular monoamine transporter (VMAT2) binding sites were assayed before and after the onset of behavioral abnormalities. GABA/benzodiazepine receptors were unchanged either before or after the onset of behavioral abnormalities in any region analyzed, whereas striatal D1-like and D2-like receptors were diminished after but not before the onset of symptoms. Dorsal striatal VMAT2 binding sites were decreased before the onset of behavioral changes. Mitochondrial electron transport chain components were assayed with histochemical methods before and after the onset of behavioral changes. There was no change in behaviorally presymptomatic or symptomatic animals. Hprt (CAG)146 mice did not exhibit increased susceptibility to the mitochondrial toxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Hprt (CAG)146 mice are a useful model for studying polyglutamine repeat disorders. J. Comp. Neurol. 465:205–219, 2003. © 2003 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34468/1/10855_ftp.pd
- …