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Abstract Due to the heterogeneous nature of the disease, it

is a challenge to capture disease activity of multiple scle-

rosis (MS) in a reliable and valid way. Therefore, it can be

difficult to assess the true efficacy of interventions in

clinical trials. In phase III trials in MS, the traditionally

used primary clinical outcome measures are the Expanded

Disability Status Scale and the relapse rate. Secondary

outcome measures in these trials are the number or volume

of T2 hyperintense lesions and gadolinium-enhancing T1

lesions on magnetic resonance imaging (MRI) of the brain.

These secondary outcome measures are often primary

outcome measures in phase II trials in MS. Despite several

limitations, the traditional clinical measures are still the

mainstay for assessing treatment efficacy. Newer and

potentially valuable outcome measures increasingly used

or explored in MS trials are, clinically, the MS Functional

Composite and patient-reported outcome measures, and on

MRI, brain atrophy and the formation of persisting black

holes. Several limitations of these measures have been

addressed and further improvements will probably be

proposed. Major improvements are the coverage of addi-

tional functional domains such as cognitive functioning

and assessment of the ability to carry out activities of daily

living. The development of multidimensional measures is

promising because these measures have the potential to

cover the full extent of MS activity and progression. In this

review, we provide an overview of the historical back-

ground and recent developments of outcome measures in

MS trials. We discuss the advantages and limitations of

various measures, including newer assessments such as

optical coherence tomography, biomarkers in body fluids

and the concept of ‘no evidence of disease activity’.

Key Points

Capturing disease activity in multiple sclerosis (MS)

trials is a challenge and traditional outcome

measures all have clear limitations.

Newer measures are being developed and

increasingly used in trials.

Multidimensional outcome measures are promising

because they have the potential to capture the full

extent of disease activity by assessing various

functional domains relevant for MS.

1 Background

Multiple sclerosis (MS) has a female predominance and

typically develops at young age with a peak incidence

between 20 and 40 years [1]. Clinically, it is characterized

by a large variability of symptoms arising from focal

inflammation of the central nervous system that may occur

at various points in time. Symptoms generally last for

several days to weeks, but occasionally persist for many

months, with subsequent full or partial recovery. These

periods are referred to as relapses. Radiologically, MS is

characterized by typical white matter lesions that are best

visualized with magnetic resonance imaging (MRI). The
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occurrence of clinical relapses or new white matter lesions

on MRI is used to estimate disease activity.

Demonstrating dissemination in time and place, clinical or

radiological, is the core feature of the diagnostic criteria [2].

The occurrence of relapses is the dominant clinical

picture in the vast majority of patients during the earlier

disease stages and is defined as relapsing-remitting MS

(RRMS). If a patient only experienced a single episode

with clinical symptoms, it is referred to as a clinically

isolated syndrome (CIS). Relapses eventually subside and

the disease course often evolves to a slow worsening of

symptoms, leading to disability accrual (i.e. disease pro-

gression). When there is a disease progression independent

from relapses, this is referred to as secondary-progressive

MS (SPMS). Approximately 15% of patients have slowly

progressive disease from onset without evident relapses

and are categorized as primary-progressive MS

(PPMS).The first effective immunomodulatory treatments

were the injectables interferon-b and glatiramer acetate that

were introduced in the 1990s [3]. After a decade, the more

potent natalizumab (in 2004) and the first oral drug fin-

golimod (in 2010) were introduced. More recently

approved treatments include teriflunomide, dimethylfu-

murate, alemtuzumab and daclizumab. Ocrelizumab and

cladribine are expected to be approved in the near future. In

the phase III trials of these treatments, the outcome mea-

sures used to evaluate efficacy were relapse rate, disability

worsening and MRI [formation of new T2 hyperintense

lesions [T2HL] or gadolinium-enhancing T1 lesions

(GdT1L)]. These measures have been generally accepted as

measures of (short-term) treatment effects.

Clearly, treatment options in MS are rapidly expanding

and are applied in patients with different clinical pheno-

types. It is therefore important to have clear, comprehen-

sive and universally accepted outcome measures. For this

purpose, an outcome measure has to be valid, reliable and

responsive. In practical terms this means it must measure

what it intends to measure, it should be free of measure-

ment errors and able to detect true change of performance

(due to disease activity or progression) [4]. Furthermore, it

needs to capture clinically relevant changes and ideally has

predictive value.

Unfortunately, standardized definitions of outcome

measures in MS research are lacking, for which there are

several explanations. First, the clinical disease expression

and course are highly variable, which hampers defining a

uniform concept of disability in MS [5–7]. There is wide

variation between patients concerning relapse frequency

(including seasonal variation [8]) and accrual of (relapse-

related) disability. Also, patients may present with virtually

all neurological symptoms that exhibit an age-dependent

distribution (Table 1) [7]. Moreover, the extent to which

symptoms contribute to overall disability is variable. This

may be more dependent on the location of the lesion than

on the size or activity. For example, a severe persisting

hemiparesis may have a greater impact on disability than a

mild sensory deficit, while both may result from patho-

logically comparable lesions. In fact, lesions may occur

subclinically without causing disability worsening [9].

Another difficulty is that disability often accumulates

slowly. Consequently, long-term follow-up is needed to

assess treatment effect, which makes trials time-consuming

and expensive. Lastly, disability is influenced by con-

founding factors that may not be directly related to disease

activity (e.g. fatigue, mood disturbances, deconditioning,

spasticity and side effects of medication) [10].

With all these difficulties in mind, we aim to provide a

non-systematical comprehensive overview of clinical and

paraclinical outcome measures that are used in clinical

research of MS (summarized in Table 2). We elaborate on

traditional and newer measures such as brain atrophy,

optical coherence tomography (OCT), biomarkers in body

fluids and the concept of ‘no evidence of disease activity’

(NEDA). We highlight the most important advantages,

limitations and caveats of these measures.

2 Clinical Outcome Measures

Outcome measures can be generic or disease-specific,

physician- or patient-based, direct or indirect, and may

cover all or specific aspects of MS. Various clinical out-

come measures are available, assessing different disease

characteristics. Which characteristics are important largely

Table 1 Distribution of patients (%) by presenting clinical symptoms and age of onset [7]

Age at onset of

MS (years)

Optic

neuritis

Diplopia

or vertigo

Acute motor

symptoms

Insidious motor

symptoms

Balance or

limb ataxia

Sensory

symptoms

\20 23 18 6 4 14 46

20–29 23 12 7 6 11 52

30–39 13 11 7 14 15 44

40–49 9 17 3 31 13 33

C50 6 13 4 47 11 32

MS multiple sclerosis
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depends on the aim of the study. Here, we first describe the

traditional measures Expanded Disability Status Scale

(EDSS) and relapses. Subsequently, the more recently

developed Multiple Sclerosis Functional Composite

(MSFC) will be discussed. Finally, we elaborate on patient-

reported outcome measures (PROMs) as these patient-

based measures are increasingly being used in MS trials.

2.1 The Expanded Disability Status Scale

The EDSS intends to capture disability of MS patients based

on neurological examination by describing symptoms and

signs in eight functional systems (FS). Furthermore, it

encompasses ambulatory function and the ability to carry out

activities of daily living (ADL). An overall score can be

given on an ordinal scale ranging from 0 (normal neuro-

logical examination) to 10 (death due to MS). Scores from 0

to 4.0 are determined by FS scores, which means that in this

range the EDSS is essentially a measure of impairment.

Scores from 4.0 higher basically address disability. Ambu-

latory function and the use of walking aids heavily determine

the range of 4.0–7.0, and scores between 7.0 and 9.5 are

largely determined by the ability to carry out ADL. A

schematic representation of the EDSS is given in Fig. 1.

In clinical trials of MS, the EDSS is the most widely

used outcome measure to determine disability worsening

and define relapse-related change in neurological function.

Furthermore, it is used as an inclusion criterion and to

characterize study populations. The value of the EDSS as a

surrogate outcome measure for future disability is limited

[11–15].

2.1.1 Limitations and Caveats

Despite general acceptance of the EDSS, there are many

limitations and caveats (summarized in Table 3) [16]. First

of all, EDSS holds high intra- and inter-rater variability

[10, 11, 17–19]. This can be explained by the subjective

nature of the neurological examination itself on which the

EDSS is largely based, particularly in the lower EDSS

range. Also, complex and ambiguous scoring rules for the

FS probably explain some of the variability.

Non-linearity of the EDSS is another limitation (visu-

alized in Fig. 1). The staying time in the middle scores is

shortest and this results in a bimodal distribution with

peaks at 1.0–3.0 and 6.0–7.0 [7, 20]. It means that the rate

of progression as assessed by the EDSS varies depending

on baseline score. Furthermore, responsiveness of the

Table 2 Primary, secondary and exploratory outcome measures in phase III trials for MS

Primary outcome measures

Clinical Expanded Disability Status Scale (EDSS): 3 or 6 months confirmed disability worsening or improvement

Relapses: annualized relapse rate, time to second relapse (conversion to clinically definite MS)

Secondary outcome measures

Clinical MS Functional Composite (MSFC): timed 25-foot walk test, nine-hole peg test, paced auditory serial addition task

or symbol digit modalities test

Paraclinical T2-hyperintense lesions

Gadolinium-enhancing T1 lesions

Whole brain atrophy

Exploratory outcome measures

Clinical As candidate component of MSFC: low-contrast letter acuity test

Patient-reported outcome measures: e.g. quality of life, depression and anxiety, fatigue, specific functional domains

Paraclinical—imaging Volumetric measures of specific structures (e.g. thalamus, upper cervical cord area)

Persisting black holes

Functional MRI for analysis of functional connectivity

Diffusion tensor imaging to examine brain tissue integrity

Magnetization transfer ratio MRI as a marker for brain myelin content

Optical coherence tomography

Paraclinical—biomarkers Biomarkers in body fluids: in CSF or blood

Composite No evidence of disease activity (NEDA): typically covering (confirmed) EDSS progression, relapse rate and

formation of MRI lesions; whole brain volume increasingly included (i.e. ‘NEDA-4’)

Electronic devices Assess MS system, Glove analyzer, accelerometers, etc.

CSF cerebrospinal fluid, MRI magnetic resonance imaging, MS multiple sclerosis
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EDSS is limited [16, 21]. Scores higher than 4.0 are less

influenced by changes in FS scores. For example, devel-

opment of a paresis in a patient with an EDSS of 6.0 will

not result in a higher EDSS. Conversely, EDSS would have

changed with a baseline EDSS of 4.0.

The non-linearity and limited responsiveness should

both be accounted for when interpreting changes over time

[22]. Nevertheless, EDSS change is often presented with-

out accounting for the baseline score. As a result, statisti-

cally significant change may erroneously be presented as

clinically relevant and vice versa. An increasingly used

clinically meaningful change is a change of 1.0 or more if

EDSS at baseline was 0 to 5.5, and 0.5 or more for higher

baseline EDSS scores. This is more driven by repro-

ducibility data than by clinical relevance data.

Because the EDSS is an ordinal scale, non-parametric

statistics should be used in statistical analysis. This implies

that significant differences between groups can be calcu-

lated, but the magnitude of differences cannot. In line with

this, results should not be presented with means and stan-

dard deviation, but with median values and interquartile

ranges. Also, a caveat of numeric values is that they might

give the false impression of being precise.

Another limitation is that clinical phenotypes are

unevenly distributed across the EDSS. Because ambulatory

dysfunction is one of themain characteristics in patients with

progressive disease (SPMS and PPMS), these patients rep-

resent a larger proportion in the range of 4.0–7.5 [23, 24].

Lastly, several domains are not (sufficiently) assessed.

Examples are cognitive function, mood, energy level and

quality of life. Symptoms in these domains are frequently

observed in MS patients and they may influence FS scores,

ambulation and ADL function.

2.1.2 Suggested Improvements

During the International Conference on Disability Out-

comes in MS (ICDOMS) that was held in 2011, several

refinements for the EDSS were suggested to improve per-

formance [25]. Firstly, a standardized script for questioning

patients (which is necessary for some FS scores) might

improve reliability and decrease the risk of unblinding in

clinical trials (an example of the Neurostatus form may be

found on http://www.neurostatus.net/). Secondly, simplifi-

cation of scoring rules might reduce intra- and inter-rater

variability. Thirdly, long-term disability worsening should

be assessed with confirmation of EDSS worsening at 6

rather than 3 months. The main reason for this is that

relapses may improve beyond 3 months, and thus EDSS

worsening may be temporary [26]. Fourthly, streamlining

of the EDSS might be achieved by finding the components

of FS that contribute most to confirmed worsening of dis-

ability and omitting the other less informative components.

Lastly, modification of the EDSS to improve linearity of

measurement will facilitate statistical analysis and clinical

understanding.

Fig. 1 Schematic representation of Expanded Disability Status Scale (EDSS) depicting the factors that determine overall score; the graph shows

the distribution of patients over the EDSS [7]. MS multiple sclerosis
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Whatever its limitations, the EDSS will probably con-

tinue to be the main disability measure for the near future

because of the vast experience with it and the possibility of

making historical comparisons. Until we have better

alternatives, clinical assessment can be improved by using

the EDSS in conjunction with other measures.

2.2 Relapses

The other traditional outcome measure is assessment of

relapses. By consensus, a relapse has been defined as new

or worsening neurological symptoms that are objectified on

neurological examination in the absence of fever and last

for more than 24 h, and have been preceded by a period of

clinical stability of at least 30 days, with no other expla-

nation than MS [27, 28].

The relationship between number of relapses and dis-

ability worsening is not completely clear, although con-

clusions may be drawn from natural history studies.

Various of these studies showed that relapses early in the

course of MS were associated with long-term disability and

increased risk of conversion to SPMS, which probably

Table 3 Limitations, caveats and improvements for clinical outcome measures

Limitations and caveats Improvements

Expanded Disability Status Scale (EDSS)

High intra- and inter-observer variability

Non-linearity (bimodal distribution)

Limited responsiveness

Necessity to use non-parametric statistics (ordinal scale)

Uneven distribution of relapsing–remitting and progressive patients

Several functional domains not assessed

Accounting for baseline score when determining change (e.g. change

C1.0 with baseline score 0–5.5, and C0.5 for higher baseline scores)

Determining disability worsening with confirmation of the EDSS

progression after at least 6 months

Using standardized scripts for questioning patients (improving

reliability and decreasing risk of unblinding)

Simplification of scoring rules (decreasing variability)

Streamlining by stripping components of the functional systems that

are less informative

Modification to improve linearity and facilitate statistical analysis

Relapses

Strong subjectivity

Recovery of signs or symptoms before confirmation of relapse

Recall bias of patient and observer bias of examiner

Newly reported symptoms not always clearly depicted in change of the

EDSS

Identification largely depends on patient reporting it

Higher relapse rate prior to inclusion: over-reporting to fulfil inclusion

criteria, high relapse rate inclusion criterion leading to decrease of

relapse rate because of regression to the mean, placebo effect,

decrease of relapse due to natural course of MS

Confirming a relapse by another examiner

Increasing number of visits to identify more relapses

Multiple Sclerosis Functional Composite (MSFC)

Moderate reliability, sensitivity and responsiveness of the PASAT

The PASAT often disliked by patients, requirement of mathematical

ability and ceiling effect

Several important functional domains are not assessed

Lack of a clear dimension of the overall score (resulting in difficult

interpretability)

Z scores are influenced by results of the reference population and

obscure the meaning of crude scores

Replacing the PASAT with the symbol digit modalities test

Adding the low-contrast letter acuity test (covering visual domain)

Adding other functional domains

Determining minimal clinically relevant changes of the Z scores and

confirming change after 6 months

Determining clinical relevance

Keeping elements separated instead of combining them into a single

score

Patient-reported outcome measures (PROM)

Unblinded nature

Potential expectance bias

Assessment of quality of life may be influenced by multiple factors

Possible response shift over time

Weighing of individual questions appropriately

Using (computer) adaptive testing to reduce test length and improve

tolerability

MS multiple sclerosis, PASAT paced auditory serial addition task
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relates to faster disability worsening [29–32]. However,

superimposed relapses in the progressive phase did not lead

to faster disability worsening [33].

Treatment effects on relapses are confined to the change

in annualized relapse rate or time to second relapse (i.e.

conversion to clinically definite MS) [34]. Treatment effect

on relapses gives a fair reflection of short-term efficacy.

2.2.1 Limitations and Caveats

There are several caveats when using relapses as an out-

come measure (summarized in Table 3). First of all,

identification of a relapse is subjective. Ensuring perfect

blinding for treatment is therefore essential. To limit sub-

jectivity, a second assessment can be performed to objec-

tify the relapse. The problem with this approach is that

symptoms or signs may already have recovered, and recall

bias of the patient and observer bias from the examiner

may influence the second assessment [35].

Another caveat is that identification of a relapse largely

depends on a patient reporting new symptoms. When a

patient only reports new symptoms on scheduled visits and

not spontaneously, the established relapse rate will be

lower than in reality. In fact, increasing the number of

visits in a trial period may increase the relapse rate [36].

An interesting phenomenon is that relapse rate is often

remarkably high prior to inclusion into trials. Various

explanations may be given for this [37, 38]. First of all,

relapses in the preceding period of a trial are usually

determined retrospectively and patients may over-report

the exact number to qualify for inclusion. Secondly, the

inclusion criterion of relapse rate is often high, meaning

that only patients with very active disease are included. As

a consequence, it can be expected that the relapse rate of

these patients will decrease towards a disease average

during the trial (i.e. regression to the mean). Thirdly,

patients participating in a trial may do better merely

because of a placebo effect or better comprehensive care

during the trial. Lastly, during the natural course of MS the

relapse rate will eventually decrease, independent of

treatment [39]. These factors may obscure the interpreta-

tion of absolute relapse rate reduction in treatment trials.

2.3 The Multiple Sclerosis Functional Composite

Because of the limitations of the EDSS and assessment of

relapses, the MSFC was developed to improve clinical

assessment [40, 41]. It was introduced in the early 1990s, a

time when the first effective treatments were introduced. In

contrast with the EDSS, the MSFC covers three functional

domains: ambulatory, hand and cognitive function (a

schematic summary is given in Fig. 2). The results of the

tests that assess these domains are depicted in an interval

scale (seconds or number of correct responses) and can be

converted to a Z score that is based on values of a reference

population [42]. An overall score can be calculated by

averaging the Z score of the subtests.

The MSFC has been extensively evaluated. The overall

score of MSFC correlated strongly with EDSS [43] and

subtest scores did moderately [40]. Also, change of MSFC

correlated with EDSS change and relapse rate [40, 44, 45].

Furthermore, it was predictive of conversion from RRMS

to SPMS [44]. Concerning the relation with MRI abnor-

malities, MSFC correlated with white matter lesion load

and various atrophy measures [46–48]. Lastly, correlations

with several PROMs [43, 49–51], employment status [52]

and driving performance [53] were found.

2.3.1 The Original Components

Ambulatory function is tested with the timed 25-foot walk

test (T25W, explained in Table 4). The T25W is a reliable

test for patients with more severe gait impairment, because

it primarily assesses walking speed. Assessing walking

speed seems clinically relevant, because it relates to the

capacity to perform outdoor activities important in daily

life [54]. For patients with mild gait impairment, the T25W

may not be sensitive enough to detect abnormalities and

because of that has a floor/ceiling effect [55]. For these

patients, it may be more appropriate to assess walking

endurance with longer walking distances; for example,

with a 6-minute walking test [56].

Hand function is tested with the nine-hole peg test

(9HPT, explained in Table 4). A change of 9HPT corre-

lated with long-term disability [57].

The paced auditory serial addition task (PASAT,

explained in Table 4) was originally included to cover the

cognitive domain [58]. It measures processing speed and

working memory, both of which are frequently affected

functions in MS patients [59]. The test has moderate reli-

ability and sensitivity for detection of cognitive impair-

ment, and has limited responsiveness to change [60].

Furthermore, it requires a certain mathematical ability and

has a clear ceiling effect [49, 61]. Finally, it is often dis-

liked by patients because the time limit induces stress.

2.3.2 Candidate Components

A candidate cognitive test that may replace the criticized

PASAT is the symbol digit modalities test (SDMT,

explained in Table 4) [62, 63]. It measures information

processing speed. The advantages of the SDMT are that it

is easily administered, better tolerated by patients (proba-

bly because there is no time pressure) [64] and more robust

and reliable than the PASAT [65, 66]. Moreover, the

SDMT correlated more strongly with white matter
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abnormalities than PASAT [67, 68]. It also correlated with

worsening of cognitive impairment [69, 70] and MRI

abnormalities (atrophy measures in particular) [71, 72]. A

limitation is that a patient has to have an intact visual

system, which may be impaired in MS patients. Although

there is a ceiling effect, it is less pronounced than for the

Fig. 2 Schematic representation of the Multiple Sclerosis Functional Composite (MSFC) with candidate components

Table 4 Description of components of the Multiple Sclerosis Functional Composite (MSFC)

Original components

Timed 25-foot walk test (T25W) The patient is directed to one end of a clearly marked 25-foot course and is instructed to walk 25 feet as

quickly as possible, but safely. The task is immediately administered again by having the patient walk

back the same distance. Patients may use assistive devices when doing this task. In clinical trials, it is

recommended that the treating neurologist select the appropriate assistive device for each patient [42]

Nine-hole peg test (9HPT) The patient is asked to take nine small pegs one by one from a small shallow container, place them into nine

holes and then remove them and place them back into the container. Results are depicted in seconds to

complete the task of both the dominant and non-dominant hand; two trials for each side [42]

Paced auditory serial addition

task (PASAT)

The PASAT is presented on audiocassette tape or compact disc to control the rate of stimulus presentation.

Single digits are presented either every 3 s (or every 2 s for the optional 2-second PASAT) and the patient

must add each new digit to the one immediately prior to it. The test score is the number of correct sums

given (out of 60 possible) in each trial. To minimize familiarity with stimulus items in clinical trials and

other serial studies, two alternate forms have been developed; the order of these should be

counterbalanced across testing sessions. The PASAT is the last measure of the MSFC that is administered

at each visit [42]

Candidate components

Symbol digit modalities

test (SDMT)

Patients are presented with a key that includes nine numbers, each paired with a different symbol. Below

this key is an array of these same symbols in pseudo-random order paired with empty spaces. Patients

must then provide the correct numbers that accompany the symbols as indicated in the key [64]

Low-contrast letter

acuity test (LCLA)

Seven charts with different levels of contrast (0.6–100%) are presented to the patient. On each chart,

multiple rows are depicted with gray letters with decreasing size on a white background. The letter scores

indicate the number of letters identified correctly. Each chart is scored separately
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PASAT. All points considered, the SDMT is probably a

good replacement for the PASAT.

When the MSFC was developed, no data on suit-

able tests to assess visual function were available. In the

past decade, various visual outcome measures for MS

research have been studied [73]. Of these, the low-contrast

letter acuity test (LCLA, explained in Table 4) may be a

good candidate to add to the MSFC [74]. Results correlated

with clinical phenotypes, MRI abnormalities and PROMs

for visual impairment and quality of life (which supports

clinical relevance) [75, 76]. Moreover, some clinical trials

showed treatment effect on the LCLA in the active group

compared with placebo [77].

2.3.3 Limitations and Caveats

There are several limitation and caveats of the MSFC

(summarized in Table 3). A frequently postulated objection

to the MSFC is that the overall score lacks a clear

dimension, which hinders interpretability and therefore

appears to be difficult for the interpreter to get familiar

with the score. In other words, it is difficult to form a

‘mental picture’ of it [78]. This difficulty may be addressed

by keeping the elements of the MSFC score separated

instead of combining them into a single score. Nonetheless,

comparison of subtest results between studies remains

impossible due to the Z scores that obscure the meaning of

crude scores.

Another problem is that results from the reference group

strongly influence the Z scores of patients [79]. With that,

assessing changes in time is problematic, because the

overall score is influenced by variability between time

points of both the reference and patient group. Conse-

quently, it is impossible to determine if change is a result of

statistical variance or true progression of disability [38].

A potential solution to some of the statistical caveats of

Z scores might be to determine the minimal clinically

relevant change [21, 80]. This means that change should be

confirmed on a subsequent time point, preferably at 6

months (because of possible disability improvement after a

relapse). This approach has been tested in a clinical trial

dataset [45]. Sensitivity of worsening was found to be

similar between MSFC and EDSS, and it correlated with

other clinical and MRI outcome measures. However, the

downside of this approach is that it will hamper sensitivity

to change, which is of particular importance in patients

with severe disability.

Despite its disadvantages, the MSFC is an appealing

alternative for the EDSS. It can be performed within 20

minutes, covers three domains, has good intra- and inter-

rater reliability and it results in a score on a continuous

scale. The MSFC has been used as the primary outcome in

a treatment trial in SPMS [49]. While MSFC progression

was slowed, treatment effects were not observed with the

EDSS. If the components are applied in a sensible way, the

MSFC may be used as the primary endpoint in future

clinical trials.

2.4 Patient-Reported Outcome Measures

A PROM is defined as ‘‘any report of a patient’s health

condition that comes directly from the patient, without

interpretation of the patient’s response by a clinician or

anyone else’’ [81].

A PROM may provide valuable insight into the patient

perspective of a treatment or matter of interest. For

example, treatment success for a patient might be more

influenced by adverse events than a physician perceives or

deduces from other outcome measures. Furthermore, it

may detect clinically meaningful changes and leave out

changes with no clinical relevance. A PROM can assess

perceived efficacy, side effects, depression and anxiety,

fatigue, mobility, quality of life, ability to carry out ADL,

sexual dysfunction and symptoms specific for MS. A list of

PROMs that are being used in MS research is presented in

Table 5 [82–105].

PROMs that assess the ability to carry out ADL may be

of particular value. They are able to demonstrate clinical

relevance of MS-specific outcome measures. For example,

one study found a correlation between the EDSS and a

42-item ADL scale that was mostly driven by impairment

of mobility [106]. Another advantage is that measuring

ADL activity allows comparison between studies of MS as

well as other diseases. Currently, no MS-specific ADL

measures are available. Nevertheless, PROMs that were

developed for stroke patients (Ranking scale [107, 108] and

Bartel index [109]) were used in some MS trials [110, 111].

There are several limitations of PROMs (summarized in

Table 3). Among these are their unblinded nature and

potential expectance bias. Also, questionnaires assessing

quality of life are prone to being influenced by more than

just disability. Other factors that are commonly seen in MS

patients contribute as well (e.g. fatigue, depression, anxiety

and physical comorbidities) [112]. Also, the individual

questions should be weighted appropriately. Summing up

all the subscores assumes equal importance which is gen-

erally not the case. Lastly, PROMs are prone to response

shift over time [113]. Response shift occurs when a patient

answers an item differently from their previous responses

due to a change of internal standards, values or conceptu-

alization of the purposed domain (e.g. quality of life).

Typically, PROMs are fixed in length and all patients

have to fill in the complete questionnaire. The number of

questions that have to be answered can be reduced with

computer adaptive testing [114]. It leads the patient

through an iterative process in which the answer to a
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question determines what question is presented next. For

example, if a patient is fully dependent on a wheelchair, a

question about climbing stairs is irrelevant. With these

methods, patients’ tolerability for a questionnaire may be

improved.

3 Paraclinical Outcome Measures

Numerous paraclinical outcome measures are available and

could be used as adjunct to clinical measures to obtain

information on treatment efficacy. Some are potentially

valuable (e.g. cerebrospinal fluid [CSF], visual evoked

potentials) while others are less suitable (e.g. brainstem

auditory evoked potentials) [115]. Here, we shortly discuss

the value of white matter pathology as detected on MRI.

Subsequently, we will elaborate on newer outcome mea-

sures, such as brain atrophy, persisting black holes (PBH),

OCT and biomarkers in body fluids.

3.1 Magnetic Resonance Imaging

3.1.1 White Matter Pathology

MRI is sensitive to detect, characterize and quantify lesions

in the white matter. It plays a fundamental role in the

McDonald diagnostic criteria for MS to demonstrate dis-

semination in time and space in addition to clinical signs

[2]. Radiological dissemination in space is defined as

having at least one lesion in at least two typical (for MS)

areas in the central nervous system. Dissemination in time

is determined when at least one new lesion is demonstrated

on a follow-up MRI, or if one asymptomatic gadolinium-

enhancing and one non-enhancing lesion are demonstrated

on the initial MRI.

The MAGNIMS workgroup recently proposed a revi-

sion of these criteria allowing even earlier diagnosis with

MRI [116]. The value of MRI as a diagnostic tool is

principally the high sensitivity to detect (past) disease

activity. Formation of new T2HL and GdT1L may occur

subclinically and are thus more frequently seen than clin-

ical relapses [9, 117]. The moderate correlation of T2HL

load with relapse rate [26, 118] and disability [119, 120] is

possibly related to this phenomenon. Nevertheless, white

matter pathology has predictive value for the clinical dis-

ease course. For example, patients with a CIS and a high

T2HL load at baseline had an increased risk of reaching an

EDSS of 3.0 [121]. Also, the presence of two or more

GdT1L in patients treated with interferon-b predicted

EDSS worsening at 15 years [122].

Because of the high sensitivity for detecting disease

activity, MRI has been widely accepted as a secondary

endpoint in clinical trials. Moreover, demonstrating effi-

cacy on MRI lesions is crucial in the development of

immunomodulatory treatments. Treatment effects on MRI

could also act as a surrogate endpoint for clinical disease

activity. A study supported this by showing that treatment

effect on MRI activity explained[80% of the variance of

treatment effect on relapse rate [123]. Other studies con-

firmed this by showing the related MRI effects on relapse

rate and accumulation of disability worsening (up to 16

years) [124–126].

These classical MRI parameters largely depict (past)

neuroinflammation in MS. However, the neurodegenerative

aspect of MS is being increasingly studied with MRI. One

reason for this is that with the current therapy we are now

able to suppress neuroinflammation effectively, but the

ultimate goal of therapy is prevention of neuronal tissue

loss or, in the long run, to stimulate neuronal repair.

Table 5 Patient-reported outcome measures that are used in MS

research

Measure

Quality of life

MS Quality of Life-54 [103]

MS Quality of Life Inventory [86]

European Quality of Life-5D [87]

Health Utilities Index Mark 3 [87]

World Health Organization Quality of Life Brief Form [100]

Sickness Impact Profile [83]

Life Satisfaction Questionnaire [96]

Hamburg Quality of Life Questionnaire in MS [91]

Quality of Life Index [85]

Leeds MS Quality of Life Scale [90]

Disability and Impact Profile [101]

The MS International Quality of Life Questionnaire [102]

Functional Assessment of MS [84]

Depression and anxiety

Beck Depression Inventory [82]

Patient Health Questionnaire-9 [95]

Hospital Anxiety and Depression Scale [94]

Fatigue

Modified Fatigue Impact Scale [89]

Fatigue Impact Scale for Daily Use [88]

Single functional domain

MS Walking Scale-12 [93]

Arm Function in MS Questionnaire [98]

Visual Function Questionnaire-25 [99]

Multiple domains

Short Form-36 [104]

MS Impact Scale-29 [92]

Guy’s Neurological Disability Scale [97]

MS Impact Profile [105]

MS Multiple sclerosis
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Another reason is that neuropathological and MRI tech-

niques have improved our insight into the underlying

neurodegenerative processes of MS [127]. Consequently,

measures that reflect these processes are more frequently

used as secondary outcome measures. The most widely

used neurodegenerative MRI measures are atrophy and

PBH.

3.1.2 Atrophy

Brain volume loss in MS patients occurs considerable

faster than in healthy people: 0.5–1.0% versus 0.1–0.3%

brain volume loss per year [128, 129]. Atrophy may be

found throughout the disease course, even in the early

phases [130]. Remarkably, the atrophy rate of gray matter

structures accelerates in patients with SPMS to 14-fold that

of healthy persons [131]. Virtually all gray matter struc-

tures are affected, although variation exists between clini-

cal phenotypes [132].

Brain volume can be visualized in various ways. The

somewhat older measures assess loss of brain volume

indirectly by measuring corpus callosum size [133],

bicaudate ratio [72] and ventricular volumes [72, 133].

Also, whole brain volume can be measured directly with

conventional MRI [72, 128]. Nowadays, segmentation of

the brain into white and gray matter compartments or

specific gray matter structures is possible and several

automated methods reduced processing time [134–136].

The relationship between atrophy measures and clinical

signs has been extensively investigated. Whole brain and

gray matter atrophy correlated strongly with disability and

cognitive impairment, both cross-sectionally and longitu-

dinally [132]. These correlations existed throughout the

disease course and clinical phenotypes. Atrophy of gray

matter structures may even be more closely related to

clinical signs than white matter lesions or whole brain

atrophy [137]. Atrophy of several structures correlated

remarkably strongly with certain clinical symptoms. For

example, cerebellar gray matter atrophy correlated strongly

with cerebellar symptoms and hand function [138], upper

cervical cord area with ambulatory dysfunction [139], and

hippocampal atrophy with memory deficits [140]. Thala-

mic volume showed a remarkably firm correlation with

cognitive impairment [141]. Also, various atrophy mea-

sures showed predictive value for future disability and

cognitive impairment [137, 142–144].

Furthermore, spinal cord volumes can be assessed, for

which the upper cervical cord area is often used. Several

studies showed a correlation between spinal cord volume

loss and clinical disability [144–146]. It has also been

correlated with long-term disability [147].

An extensive summary of clinical trials that used brain

atrophy as a secondary endpoint may be found elsewhere

[148, 149]. Noteworthy is a recent meta-analysis that

showed that 75% of the variance of treatment effect on

disability was explained by whole brain atrophy and T2HL

[150]. Another meta-analysis found evidence that whole

brain atrophy in patients that received immunomodulatory

treatment was lower than in the placebo group [151].

Although volumetric measurements are appealing out-

come measures, there are some caveats and limitations.

Firstly, atrophy accumulates very slowly, which generally

means that longer follow-up is needed to detect significant

changes. Clearly, this accounts particularly for treatment

effects on smaller structures, such as thalamic volume.

Secondly, the short-term effect of immunosuppression on

brain tissue may cause a decrease in brain volume due to

resolution of inflammation. This volume loss is not a sign

of neurodegeneration, because there is no loss of neuronal

tissue. This is often referred to as ‘pseudo-atrophy’.

Importantly, this effect may last up to 1 year after initiation

of treatment [152, 153]. Thirdly, various physiological

variations in the content of the intra- and extra-cellular

compartments affect volumetric measurements [154].

Lastly, factors that are not MS-specific (such as dehydra-

tion, alcohol use, smoking, genetic variation, comorbidities

and age) may influence brain volume [154].

3.1.3 Persisting Black Holes

Another MRI marker for neurodegeneration is formation of

PBH. These lesions are often defined as non-enhancing

T2HL with persisting signal intensity between that of the

gray matter and the CSF on T1-weighted scans [155].

Approximately 30–40% of active T2HL will eventually

evolve into PBH within 6–12 months [156]. The underly-

ing neuropathology of PBH is severe and irreversible tissue

damage [156]. Accumulation of PBH is associated with

accrual of disability [157, 158]. Furthermore, the PBH load

correlated with disability worsening over 10 years [159].

Some clinical trials found significant effects of treatment

on the formation of PBH [160–163].

Several more advanced MRI techniques are potentially

valuable outcome measures, although they need further

research to clarify the exact relevance. Examples are

functional MRI for analysis of functional connectivity

[164], diffusion tensor imaging to examine brain tissue

integrity [165] and magnetization transfer ratio MRI as a

marker for brain myelin content [166, 167].

3.2 Optical Coherence Tomography

The retina can be visualized non-invasively, safely and fast

with OCT. This technique uses the reflection of near infra-

red light on the retina. Different layers of the retina can be

distinguished on high-resolution images. It has been proven
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to be valuable in quantifying pathology in these layers,

although the exact underlying pathophysiological processes

of these findings are largely unclear [168, 169].

Most findings of the research with OCT in MS point to

neurodegenerative changes such as axonal loss and neu-

ronal soma shrinkage [170]. Therefore, OCT is a good

candidate outcome measure to assess treatment effect on

neurodegeneration, which makes it an attractive tool in

progressive MS trials. For this purpose, the retinal nerve

fibre layer (RNFL) is of particular interest. The thickness of

this layer may be decreased following optic neuritis

[171, 172], but also decreases more slowly in patients

without prior optic neuritis [171, 173]. The latter may

indicate ongoing neurodegeneration. Furthermore, RNFL

thickness correlated with cerebral atrophy measures

[174, 175] and with axonal loss in the anterior visual

pathway [176, 177].

Clinically, thinning of the RNFL correlated with worse

performance on the LCLA (explained in Table 4)

[171, 178], and a reduced visual quality of life [179].

Correlations of RNFL thickness with EDSS were less

consistent [180, 181]. In a recent large multicenter study of

patients without prior optic neuritis, persons with a RNFL

thickness in the lowest tertile at baseline had double the

risk of disability worsening in 2 years compared with the

other tertiles [182]. The risk further increased with a longer

follow-up. The clinical relevance of other layers, such as

macular volume [183] and retinal ganglion-cell/inner

plexiform layer thickness [184, 185], is less clear.

The advantage of OCT over MRI is that it is technically

easier and widely accessible. When using a predefined

scanning protocol, it has good reliability [186]. Neverthe-

less, further research is needed before OCT can be

implemented as an outcome measure. This is particularly

the case for longitudinal data of the various layers.

3.3 Biomarkers in Body Fluids

Both MRI and OCT allow detection of neuroinflammation

and neurodegeneration at various time points, but have

limited sensitivity to detect ongoing processes. Biomarkers

in body fluids, such as CSF and blood, might be more

useful for this purpose. Although it is beyond the scope of

this review to discuss this topic thoroughly (it was recently

reviewed elsewhere [187]), a few biomarkers are worth

mentioning.

There are several potentially valuable CSF biomarkers

that might give a real-time reflection of ongoing neurode-

generation. A biomarker that reflects axonal injury is

neurofilament. This protein is a major component of the

axonal cytoskeleton and is released following neuronal

damage [188]. Neurofilament levels in CSF are generally

raised in MS patients, particularly during an acute relapse

[189, 190]. Furthermore, increased levels were associated

with worse EDSS [190], faster disability worsening in 15

years [191], gadolinium-enhancing lesion load [192] and

atrophy (of the brain and spinal cord) in 15 years [193].

Neurofilament levels were also responsive to treatment

with fingolimod [194] and natalizumab [195], and therefore

might be biomarkers for treatment effect.

Other proteins of the axonal cytoskeleton that can be

measured in CSF are actin [196, 197] and tubulin

[197, 198]. Proteins that indicate ongoing disease activity

are sphingolipids (component of the myelin sheet) [199],

glial fibrillary acidic protein (GFAP) [200], S100B [200]

and Chitinase 3-like proteins [201].

Compared with CSF, blood is generally less well studied

for biomarkers, but clearly has the advantage that it is

much easier to obtain. As in CSF, neurofilament in the

blood might act as a biomarker for neurodegeneration.

Neurofilament levels predicted recovery of spinal cord

lesions [202], and higher concentrations were associated

with faster conversion to definite MS and more cerebral

lesions [203]. Another biomarker that is used to determine

bioactivity of interferon-b is myxovirus-resistance protein

A (MxA). It also seems to be indicative of recent and future

disease activity [204, 205]. Lastly, various small noncoding

microRNAs are potentially valuable for predicting disease

course and treatment response [187].

The exact value of these biomarkers as outcome mea-

sures will have to be determined. If clinically meaningful,

they will probably be used in combination with other

measures. They may be particularly useful to assess treat-

ment effects in trials with progressive MS, because iden-

tification of progression or neurodegenerative changes

remains very challenging.

4 No Evidence of Disease Activity

The concept of a ‘disease-activity-free status’ as the ulti-

mate treatment goal has been used in other medical con-

ditions, including cancer and inflammatory diseases such as

rheumatoid arthritis. It implies the absence of measurable

disease activity. This concept has been translated to NEDA

and is used in more recent MS trials as a secondary out-

come measure [206, 207]. It is essentially a multidimen-

sional measure that typically covers (confirmed) EDSS

progression, relapse rate and formation of MRI lesions

(T2HL or GdT1L). However, any parameter related to

disease activity may be added.

A recent study in a cohort of RRMS patients found that

NEDA at 2 years had a positive predictive value for

absence of disability progression at 7 years of 78% [207].

Furthermore, the predictive value of NEDA was greater

than each of the individual components. Other studies also
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showed that combinations of clinical and MRI parameters

had better predictive value for disability progression than

individual measures [125, 150, 208–210]. For example, a

recent meta-analysis found that treatment effect on T2HL

and brain volume combined explained 75% of the variance

of disability progression in 2 years, and this was signifi-

cantly higher than predictive values of the MRI measures

individually [150].

In clinical practice, NEDA-like models are used to

identify responders and non-responders to treatment.

Examples are the Modified Rio Score [211] and the

Canadian Treatment Optimization Recommendation

Model [35]. Such tools need to have good long-term pre-

dictive power for disability, before a treatment decision can

be based on them.

When using NEDA as an outcome measure to assess

treatment efficacy, it is important to consider the timing of

assessment. The reason for this is that a treatment needs to

have had enough time to become effective. This can be

illustrated by the finding that 70% of patients had NEDA 2

years after initiating treatment with natalizumab with

baseline assessment after 1 year, compared with 51%

NEDA with a baseline at initiation of therapy [212]. For

alemtuzumab timing is different, because the true treatment

effect starts after the second infusion cycle, 1 year after the

initial course [213]. This issue has implications when

determining if NEDA can be a valid outcome measure for

disability in the long run.

Although NEDA seems an appealing outcome mea-

sure in some ways, it is not yet clear which (functional)

domains are important to include and when or how fre-

quently these should be assessed. It should, for example,

reflect what is important in daily life for patients.

Therefore, including a PROM seems indispensable.

Also, markers for neurodegeneration should be involved

when tissue loss is considered to be the ultimate treat-

ment goal. Therefore, brain volume is increasingly added

to NEDA (referred to as NEDA-4) [214]. However,

adding more assessments likely reduces the number of

patients fulfilling NEDA, and may raise the bar to a too-

high level resulting in the rejection of highly active, but

not perfect, interventions.

Taken together, NEDA will continue to evolve while

evidence accumulates about what are valuable outcome

measures. Standardization of timing and functional sub-

domains are imperative for comparison between studies.

5 Future Perspectives

The number and quality of outcome measures is increasing,

and with that the assessment of treatment efficacy will

improve over the coming years. Until new measures are

validated and generally accepted, the traditional outcome

measures of EDSS and relapse rate will remain primary

endpoints in clinical trials. However, it is very unlikely that

these measures are sufficient to fully assess treatment

efficacy. Eventually, measures that more explicitly capture

multiple dimensions (e.g. MSFC and NEDA) will probably

become the new standard. They are particularly useful to

detect infrequent events (e.g. relapses) or small changes

(e.g. brain atrophy and disability worsening) under treat-

ment, which is increasingly important with highly effective

therapy. The same accounts for treatment of progressive

disease (SPMS and PPMS), in which small and gradual

treatment effects can be expected. Moreover, multidimen-

sional measures might decrease duration and size of clin-

ical trials. The caveats of multidimensional measures that

have to be taken into account are summarized in Table 6

[25].

In addition to improvement of existing outcome mea-

sures, innovative techniques such as electronic devices and

mobile device applications are potentially valuable. They

allow, for instance, multiple or continuous assessment

which might give a more adequate picture of a patient’s

ability or disability and the impact of the disease on daily

living.

Several electronic devices are under development to

assess disability. An example of this is the Assess MS

system that uses an infra-red camera to register movements

of upper and lower limbs, trunk and ambulation for auto-

matic quantification of these movements. Results from a

pilot study in MS are promising and these preliminary

results are currently being validated with a new high-res-

olution camera [215]. Another device that has been

developed is the Glove analyzer system, which is able to

record data from finger movements to assess hand and arm

function [216]. Also, accelerometers are potentially useful

tools to measure mobility automatically [217]. Apart from

other attractive aspects, electronic devices are free of intra-

rater variability.

Mobile device applications are increasingly being used

in the medical field and are also potentially useful in

assessing outcomes in MS trials. Applications can be easily

distributed and accessible for everyone with a smart phone.

They can be used in several ways; for example, for

assessing a PROM on a regular basis—up to several times

per day. Also, applications may be connected online with

investigators to get real-time access to or feedback from a

patient’s status. This may decrease the number of visits

needed or could help decide whether or not face-to-face

contact with a patient is needed. In past years, healthcare

‘hackathons’ (i.e. an acronym of HACKers marATHONS)

were organized to stimulate development and integration of

medical devices and mobile device applications [218, 219].

However, many of these applications need rigorous
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scientific validation before they may be considered as

outcome measures in clinical trials.

6 Conclusions

To conclude, assessing outcome in clinical trials in MS is

not straightforward and is therefore a challenging field.

Although much has been achieved the past decades, ‘old

habits die hard’ and traditional measures will probably

remain the standard in the near future. When more

advanced measures have proven their value, they need to

earn general acceptance by healthcare providers and

especially regulatory agencies. In the end, only multidi-

mensional measures will allow full coverage of disease

activity and progression of MS and are thus best suited to

assessing treatment efficacy in MS trials.
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