42 research outputs found

    Condensates of Strongly-interacting Atoms and Dynamically Generated Dimers

    Full text link
    In a system of atoms with large positive scattering length, weakly-bound diatomic molecules (dimers) are generated dynamically by the strong interactions between the atoms. If the atoms are modeled by a quantum field theory with an atom field only, condensates of dimers cannot be described by the mean-field approximation because there is no field associated with the dimers. We develop a method for describing dimer condensates in such a model based on the one-particle-irreducible (1PI) effective action. We construct an equivalent 1PI effective action that depends not only on the classical atom field but also on a classical dimer field. The method is illustrated by applying it to the many-body behavior of bosonic atoms with large scattering length at zero temperature using an approximation in which the 2-atom amplitude is treated exactly but irreducible NN-atom amplitudes for N3N \ge 3 are neglected. The two 1PI effective actions give identical results for the atom superfluid phase, but the one with a classical dimer field is much more convenient for describing the dimer superfluid phase. The results are also compared with previous work on the Bose gas near a Feshbach resonance.Comment: 10 figure

    Resonant Dimer Relaxation in Cold Atoms with a Large Scattering Length

    Full text link
    Efimov physics refers to universal phenomena associated with a discrete scaling symmetry in the 3-body problem with a large scattering length. The first experimental evidence for Efimov physics was the recent observation of a resonant peak in the 3-body recombination rate for 133Cs atoms with large negative scattering length. There can also be resonant peaks in the atom-dimer relaxation rate for large positive scattering length. We calculate the atom-dimer relaxation rate as a function of temperature and show how measurements of the relaxation rate can be used to determine accurately the parameters that govern Efimov physics.Comment: 4 pages, 2 eps figures, normalization error in figures corrected, equations unchange

    Rearranging Pionless Effective Field Theory

    Get PDF
    We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalization scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.Comment: 15 pages LaTeX, 9 eps figures, discussions extended and references adde

    Compact and Loosely Bound Structures in Light Nuclei

    Get PDF
    A role of different components in the wave function of the weakly bound light nuclei states was studied within the framework of the cluster model, taking into account of orbitals "polarization". It was shown that a limited number of structures associated with the different modes of nucleon motion can be of great importance for such systems. Examples of simple and quite flexible trial wave functions are given for the nuclei 8^8Be, 6^6He. Expressions for the microscopic wave functions of these nuclei were found and used for the calculation of basic nuclear characteristics, using well known central-exchange nucleon-nucleon potentials.Comment: 19 pages, 3 ps figure

    Neutron19-^{19}C scattering near an Efimov state

    Full text link
    The low-energy neutron19-^{19}C scattering in a neutron-neutron-core model is studied with large scattering lengths near the conditions for the appearance of an Efimov state. We show that the real part of the elastic ss-wave phase-shift (δ0R\delta_0^R) presents a zero, or a pole in kcotδ0R k\cot\delta_0^{R}, when the system has an Efimov excited or virtual state. More precisely the pole scales with the energy of the Efimov state (bound or virtual). We perform calculations in the limit of large scattering lengths, disregarding the interaction range, within a renormalized zero-range approach using subtracted equations. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths

    Controlling a resonant transmission across the δ\delta'-potential: the inverse problem

    Full text link
    Recently, the non-zero transmission of a quantum particle through the one-dimensional singular potential given in the form of the derivative of Dirac's delta function, λδ(x)\lambda \delta'(x) , with λR\lambda \in \R, being a potential strength constant, has been discussed by several authors. The transmission occurs at certain discrete values of λ\lambda forming a resonance set λnn=1{\lambda_n}_{n=1}^\infty. For λλnn=1\lambda \notin {\lambda_n}_{n=1}^\infty this potential has been shown to be a perfectly reflecting wall. However, this resonant transmission takes place only in the case when the regularization of the distribution δ(x)\delta'(x) is constructed in a specific way. Otherwise, the δ\delta'-potential is fully non-transparent. Moreover, when the transmission is non-zero, the structure of a resonant set depends on a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that tends to δ(x)\delta'(x) in the sense of distributions as ε0\varepsilon \to 0. Therefore, from a practical point of view, it would be interesting to have an inverse solution, i.e. for a given λˉR\bar{\lambda} \in \R to construct such a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that the δ\delta'-potential at this value is transparent. If such a procedure is possible, then this value λˉ\bar{\lambda} has to belong to a corresponding resonance set. The present paper is devoted to solving this problem and, as a result, the family of regularizing sequences is constructed by tuning adjustable parameters in the equations that provide a resonance transmission across the δ\delta'-potential.Comment: 21 pages, 4 figures. Corrections to the published version added; http://iopscience.iop.org/1751-8121/44/37/37530
    corecore