Abstract

Recently, the non-zero transmission of a quantum particle through the one-dimensional singular potential given in the form of the derivative of Dirac's delta function, λδ(x)\lambda \delta'(x) , with λR\lambda \in \R, being a potential strength constant, has been discussed by several authors. The transmission occurs at certain discrete values of λ\lambda forming a resonance set λnn=1{\lambda_n}_{n=1}^\infty. For λλnn=1\lambda \notin {\lambda_n}_{n=1}^\infty this potential has been shown to be a perfectly reflecting wall. However, this resonant transmission takes place only in the case when the regularization of the distribution δ(x)\delta'(x) is constructed in a specific way. Otherwise, the δ\delta'-potential is fully non-transparent. Moreover, when the transmission is non-zero, the structure of a resonant set depends on a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that tends to δ(x)\delta'(x) in the sense of distributions as ε0\varepsilon \to 0. Therefore, from a practical point of view, it would be interesting to have an inverse solution, i.e. for a given λˉR\bar{\lambda} \in \R to construct such a regularizing sequence Δε(x)\Delta'_\varepsilon(x) that the δ\delta'-potential at this value is transparent. If such a procedure is possible, then this value λˉ\bar{\lambda} has to belong to a corresponding resonance set. The present paper is devoted to solving this problem and, as a result, the family of regularizing sequences is constructed by tuning adjustable parameters in the equations that provide a resonance transmission across the δ\delta'-potential.Comment: 21 pages, 4 figures. Corrections to the published version added; http://iopscience.iop.org/1751-8121/44/37/37530

    Similar works

    Full text

    thumbnail-image

    Available Versions